\(x.y.z=240\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Tiếc was bài này mk lm đc mà đang onl bằng Đt nên ko vào cx đc huhuhuh

13 tháng 10 2016

thế từ h tới khoảng  4 h chiều nếu bn có thể vào trả lời thì giúp mk nhé

24 tháng 1 2017

a) Ta đặt: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{-2}=k\)

\(\Rightarrow x=4k;y=3k;z=-2k\)

\(\Rightarrow xyz=\left(4.3.-2\right).k^3\)

\(\Rightarrow xyz=\left(-24\right).k^3\)

\(\Rightarrow k^3=240:\left(-24\right)=-10\)

\(\Rightarrow\)(đề sai, không ra số tự nhiên)

24 tháng 1 2017

nếu đề cho là tìm thui thì là thuộc Z đó bạn

29 tháng 9 2016

x=18

y=16

z=15

14 tháng 12 2017

a,Áp dụng dãy tỉ số bằng nhau: 

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{21}{3}=7\)\(\Rightarrow\hept{\begin{cases}x=7.5=35\\y=2.7=14\end{cases}}\)

c,Áp dụng dãy tỉ số bằng nhau:

  \(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x+y}{4+3}=\frac{14}{7}=2\)\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.2=4\end{cases}}\)

6 tháng 8 2016

a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:

x/4  =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2

=> x=2.4=8

     y=2.3=6

     z=2.9=18

6 tháng 8 2016

a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)

ADTCCDTSBN, ta có: 

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow x=2.4=8\)

\(y=2.3=6\)

\(z=2.9=18\)

b) Đề có nhầm lẫn j k nhỉ =.=

c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)

ADTCCDTSBN, ta có:

\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)

\(\Rightarrow x=-40:5=-8\)

\(y=-40:8=-5\)

\(z=-40:20=-2\)

27 tháng 9 2017

a) Từ \(9x=3y=2z\) ta chia các vế cho 18 (là BCNN của 9, 3 và 2) ta được:

  \(\frac{9x}{18}=\frac{3y}{18}=\frac{2z}{18}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{6}=\frac{z}{9}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{6}=\frac{z}{9}=\frac{x-y+z}{2-6+9}=\frac{50}{5}=10\)

=> \(\frac{x}{2}=10\Rightarrow x=10.2=20\)

    \(\frac{y}{6}=10\Rightarrow y=10.6=60\)

  \(\frac{z}{9}=10\Rightarrow z=10.9=90\)

b) Đặt \(k=\frac{x}{5}=\frac{y}{2}=\frac{z}{-3}\)

=> \(x=5k\) ; \(x=2k\) ; \(z=-3k\)    (*)

Biết xyz = 240 => \(5k.2k.\left(-3k\right)=240\)

\(\Rightarrow-30k^3=240\)

\(\Rightarrow k^3=-8\)

\(\Rightarrow k=-2\)

Thay vào (*) ta được

\(x=5k=5.\left(-2\right)=-10\)

\(y=2k=-4\)

\(z=-3k=6\)

4 tháng 8 2020

a)\(\hept{\begin{cases}9x=3y=2z\\x-y+z=50\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{9}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\\x-y+z=50\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{9}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x-y+z}{\frac{1}{9}-\frac{1}{3}+\frac{1}{2}}=\frac{50}{\frac{5}{18}}=180\)

\(\Rightarrow\hept{\begin{cases}x=20\\y=60\\z=90\end{cases}}\)

b) Đặt \(\frac{x}{5}=\frac{y}{2}=\frac{z}{-3}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=2k\\z=-3k\end{cases}}\)

xyz = 240 <=> 5k.2k.(-3)k = 240

                 <=> -30k3 = 240

                 <=> k3 = -8

                 <=> k3 = (-2)3

                 <=> k = -2

=> \(\hept{\begin{cases}x=-10\\y=-4\\z=6\end{cases}}\)

10 tháng 9 2019

Tìm x;y;z biết 

a) \(5x=8y=3z\text{ và }x-2y+z=34\)

Giải

Từ \(5x=8y=3z\)

\(\Rightarrow\hept{\begin{cases}5x=8y\\8y=3z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{5}\\\frac{y}{3}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{24}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{40}\end{cases}\Rightarrow}\frac{x}{24}=\frac{y}{15}=\frac{z}{40}\Rightarrow\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{24}=\frac{y}{15}=\frac{z}{40}=\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}=\frac{x-2y+z}{24-30+40}=\frac{34}{34}=1\)

\(\Rightarrow x=24.1=24;\)

\(y=15.1=15;\)

\(z=40.1=40\)

Vậy x = 24; y = 15 ; z = 40

b) \(15x=10y=6z\text{ và }xyz=-1920\left(1\right)\)

Giải

Từ \(15x=10y=6z\)

\(\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{6}=\frac{z}{10}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{30}\\\frac{y}{30}=\frac{z}{50}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{30}=\frac{z}{50}}\)

Đặt \(\frac{x}{20}=\frac{y}{30}=\frac{z}{50}=k\)

\(\Rightarrow x=20k;y=30k;z=50k\left(2\right)\)

Thay (2) vào (1) ta có : 

\(\)\(20k.30k.50k=-1920\)

\(\Rightarrow k^3.30000=-1920\)

\(\Rightarrow k^3=-\frac{1920}{30000}\)

\(\Rightarrow k^3=-\frac{64}{1000}\)

\(\Rightarrow k^3=-\frac{4^3}{10^3}\)

\(\Rightarrow k^3=\left(-\frac{4}{10}\right)^3\)

\(\Rightarrow k=-\frac{4}{10}\)

Khi đó : \(x=-\frac{4}{10}.20=-8;\)

\(y=-\frac{4}{10}.30=-12;\)

\(z=-\frac{4}{10}.5=-20\)

Vậy x = - 8 ; y = - 12 ; z = - 20

c) \(x^3 +y^3+z^3=792\left(1\right)\text{ và }\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Giải

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

\(\Rightarrow x=2k;y=3k;z=4k\left(2\right)\)

Thay (2) vào (1) ta có :

\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=792\)

\(\Rightarrow k^3.2^3+k^3.3^3+k^3.4^3=792\)

\(\Rightarrow k^3.8+k^3.27+k^3.64=792\)

\(\Rightarrow k^3.\left(8+27+64\right)=792\)

\(\Rightarrow k^3.99=792\)

\(\Rightarrow k^3=8\)

\(\Rightarrow k^3=2^3\)

\(\Rightarrow k=2\)

Khi đó \(x=2.2=4;\)

\(y=3.2=6;\)

\(z=4.2=8\)

Vậy x = 4 ; y = 6 ; z = 8

21 tháng 7 2017

B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)

             \(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)

 TỪ ĐÓ SUY RA Y=9;Z=15