K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}=\frac{x-2y+4z}{20-2\cdot9+4\cdot6}=\frac{13}{26}=\frac12\)

=>\(\begin{cases}x=20\cdot\frac12=10\\ y=9\cdot\frac12=\frac92\\ z=6\cdot\frac12=3\end{cases}\)

2: \(\frac{x}{3}=\frac{y}{4}\)

=>\(\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{7}\)

=>\(\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

mà 2x+3y-z=186

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2\cdot15+3\cdot20-28}=\frac{186}{62}=3\)

=>\(\begin{cases}x=3\cdot15=45\\ y=3\cdot20=60\\ z=3\cdot28=84\end{cases}\)

3: \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)

=>\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}\)

mà 3x+5y+7z=123

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}=\frac{3x+5y+7z}{3\cdot2+5\cdot2,5+7\cdot1,75}=\frac{123}{30,75}=4\)

=>\(\begin{cases}x=4\cdot2=8\\ y=4\cdot2,5=10\\ z=4\cdot1,75=7\end{cases}\)

4: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)

=>\(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}\)

Đặt \(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}=k\)

=>\(x=2k;y=\frac32k;z=\frac43k\)

xyz=-108

=>\(2k\cdot\frac32k\cdot\frac43k=-108\)

=>\(4k^3=-108\)

=>\(k^3=-27\)

=>k=-3

=>\(\begin{cases}x=2\cdot\left(-3\right)=-6\\ y=\frac32\cdot\left(-3\right)=-\frac92\\ z=\frac43\cdot\left(-3\right)=-4\end{cases}\)

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

16 tháng 10 2021

a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)

Áp dụng t/c dãy tỏ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)

16 tháng 10 2021

b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)

10 tháng 10 2017

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{6}\Rightarrow\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}\)

áp dụng tính chất dãy tỉ số bn ta có 

\(\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y+2z}{15-6+12}=\frac{24}{21}=\frac{8}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{40}{7}\\y=\frac{24}{7}\\z=\frac{48}{7}\end{cases}}\)

10 tháng 10 2017

đề bài câu a xem lại nhé 

b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4};x+z=18\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\)\(x=3.2=6\)

\(y=3.3=9\)

\(z=3.4=12\)

22 tháng 6 2017

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)

22 tháng 6 2017

e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)

Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).

6 tháng 8 2017

Dựa vào tỉ số bằng nhau ta đc:

a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

       Áp dụng t/c dãy tỉ số bằng nhau ta đc:

             \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)

       Các câu kia tg tự nha

6 tháng 8 2017

c) 

\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5 

Áp dụng tính chất dãy tỉ số bằng nhau,ta có: 

   \(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)

\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)

\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)

Vậy...

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

24 tháng 7 2015

x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15

adtcdtsbn:

x/4=y/6=z/15=x+y+z/4+6+15=50/25=2

suy ra : x/4=2=>x=4.2=8

y/6=2=>y=2.6=12

z/15=2 => z=15.2=30