Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ta có : \(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Rightarrow\left(x+y+z\right)^2=3^2\)
\(\Rightarrow x+y+z=3\)
\(\Rightarrow\hept{\begin{cases}3x=-5\\3y=9\\3z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{3}\\y=3\\z=\frac{5}{3}\end{cases}}\)
Mà x , y , z là các số nguyên nên không có nghiệm x , y , z cần tìm
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)
Cộng ba vế trên vế theo vế ta được:
\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-3\\x+y+z=3\end{cases}}\)
Với \(x+y+z=-3\)
\(\Rightarrow x=\frac{5}{3}\);\(y=-3\);\(z=-\frac{5}{3}\)
Với \(x+y+z=3\)
\(\Rightarrow x=-\frac{5}{3}\);\(y=3\);\(z=\frac{5}{3}\)
x(x+y+z) = -5 (1)
y(x+y+z) = 9 (2)
z(x+y+z) = 5 (3)
Cộng (1) ( 2)và (3) ta có
x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 +5
=> (x+y+z) (x +y +z) = 9
=> (x+y+z)^2 = 9
=> x+y +z = 3 hoặc x+y +z = - 3
(+) TH1 x + y +z = 3
thay vào (1) ta có : x . 3 = -5 => x = -5/3
thay vào (2) ta có : y . 3 = => y =3
thay vào 3 ta có z . 3 = 5 => z = 5/3
(+) TH2 tương tự
(lik e nha **** hết cho mình đi)
Theo đầu bài ta có:
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\)
\(\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=4+5\)
\(\Rightarrow\left(x+y+z\right)^2=9\)
\(\Rightarrow x+y+z=3\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{5}{x+y+z}=-\frac{5}{3}\\y=\frac{9}{x+y+z}=3\\z=\frac{5}{x+y+z}=\frac{5}{3}\end{cases}}\)
x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
(x+y+z)^2=9
x+y+z=3 hoặc x+y+z=-3
x(x+y+z)=x.3=-5 =>x=-5/3
Với x+y+z=-3 ta có x=5/3
Tương tự ta cũng có y=3 hoặc y=-3, z=5/3 hoặc z=-5/3