K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

két bạn với mk nhé hoàng nguyên minh thư

16 tháng 7 2017

588997543679964jsjjdhdhdfhhdkeoj

Theo đề, ta có: \(\left\{{}\begin{matrix}2x=3y\\4y=5z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{4}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=k\)

=>x=15k; y=10k; z=8k

Ta có: \(3x^2-y^2+z^2=1971\)

\(\Leftrightarrow675k^2-100k^2+64k^2=1971\)

\(\Leftrightarrow k^2=\dfrac{219}{71}\)

Trường hợp 1: \(k=\sqrt{\dfrac{219}{71}}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=15\sqrt{\dfrac{219}{71}}\\y=10\sqrt{\dfrac{219}{71}}\\z=8\sqrt{\dfrac{219}{71}}\end{matrix}\right.\)

Trường hợp 2: \(k=-\sqrt{\dfrac{219}{71}}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-15\sqrt{\dfrac{219}{71}}\\y=-10\sqrt{\dfrac{219}{71}}\\z=-8\sqrt{\dfrac{219}{71}}\end{matrix}\right.\)

5 tháng 9 2021

a, Ta có : 3x = 5y => \(\dfrac{x}{5}=\dfrac{y}{3}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\Rightarrow x=25;y=15\)

b, Ta có : \(6x=10y=15z\Rightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{5+3+2}=\dfrac{90}{10}=9\Rightarrow x=45;y=27;z=18\)

c, tương tự b 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{40}{8}=5\)

Do đó: x=15; y=25

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y+z}{\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{3}}=270\)

Do đó: x=45; y=27; z=18

AH
Akai Haruma
Giáo viên
30 tháng 7 2023

Lời giải:
Theo bài ra ta có:

$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$

$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$

Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$

$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:

$3x^2-y^2+z^2=876$

$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$

$\Rightarrow 219k^2=876$

$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$

Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$

Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$

x và y tỉ lệ nghịch với 6 và 5

nên 6x=5y

=>x/5=y/6

y và z tỉ lệ nghịch với 4 và 3

nên 4y=3z

=>y/3=z/4

=>x/5=y/6=z/8=(x+y+z)/(5+6+8)=38/19=2

=>x=10; y=12; z=16