K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2016

Ta có:\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

=>      \(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}\)\(=\frac{0}{29}=0\)

=>\(\hept{\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}}\)=>\(\hept{\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}}\)

=> 12x=8y=6z

=>  \(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=>\(\frac{x^2}{4}=\frac{4y^2}{36}=\frac{3z^2}{48}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{4y^2}{36}=\frac{3z^2}{48}\)\(=\frac{x^2-4y^2+3z^2}{4-36+48}\)\(=\frac{1}{16}\)

=>x2=1/4 =>x={-1/4 ; 1/4}

-x=-1/4 => \(\hept{\begin{cases}y=-\frac{3}{8}\\z=-\frac{1}{2}\end{cases}}\)                                      -x=1/4 =>\(\hept{\begin{cases}y=\frac{3}{8}\\z=\frac{1}{2}\end{cases}}\)

4 tháng 10 2016

Ta có:  \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\)

\(\Rightarrow\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(=\frac{4.\left(3x-2y\right)}{4.4}=\frac{3.\left(2z-4x\right)}{3.3}=\frac{2.\left(4y-3z\right)}{2.2}\)

\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\frac{0}{29}=0\)

\(\Rightarrow\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}\)\(\Rightarrow\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\)\(\Rightarrow12x=8y=6z\)

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=\frac{x+y-z}{\frac{1}{12}+\frac{1}{8}-\frac{1}{6}}=\frac{-10}{\frac{1}{24}}=-10.24=-240\)

\(\Rightarrow\begin{cases}x=-240.\frac{1}{12}=-20\\y=-240.\frac{1}{8}=-30\\z=-240.\frac{1}{6}=-40\end{cases}\)

Vậy x = -20; y = -30; z = -40

5 tháng 10 2016

Giỏi nhở~

4 tháng 3 2020

Ta có : \(\frac{3x-2y}{4}=\frac{4y-3z}{2}=\frac{2z-4x}{3}\)

\(\Leftrightarrow\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}=\frac{12x-8y+8y-6z+6z-12x}{16+4+9}=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3x-2y}{4}=0\\\frac{4y-3z}{2}=0\\\frac{2z-4x}{3}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3x=2y\\4y=3z\\2z=4x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{4}\\\frac{x}{2}=\frac{z}{4}\end{cases}}\) \(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Leftrightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x-2y+3z}{2-6+12}=\frac{8}{8}=1\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{4}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)

Vậy : \(\left(x,y,z\right)=\left(2,3,4\right)\)

31 tháng 3 2020

Ta có : \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\)

=> \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3}{2}\)

=> \(\frac{4\left(3x-2y\right)}{4\cdot4}=\frac{3\left(2z-4x\right)}{3\cdot3}=\frac{2\left(4y-3z\right)}{2\cdot2}\)

=> \(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{29}=\frac{0}{29}=0\)

=> \(\hept{\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}}\Rightarrow\hept{\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}}\Rightarrow12x=8y=6z\)

=> \(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}\)

Đặt \(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{12}k\\y=\frac{1}{8}k\\z=\frac{1}{6}k\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{k}{12}\\y=\frac{k}{8}\\z=\frac{k}{6}\end{cases}}\)

=> \(x+y-z=\frac{k}{12}+\frac{k}{8}-\frac{k}{6}\)

=> \(\frac{k}{24}=-10\)

=> \(k=-240\)

Từ đó suy ra : \(x=-\frac{240}{12}=-20\),y = \(-\frac{240}{8}=-30\),z = \(-\frac{240}{6}=-40\)

1 tháng 4 2020

VÌ \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\)

\(\Rightarrow\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(=\frac{4\left(3x-2y\right)}{4.4}=\frac{3\left(2z-4x\right)}{3.3}=\frac{2\left(4y-3z\right)}{2.2}\)

\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)

\(\Rightarrow3x-2y=0\)    (1)

\(2z-4x=0\)

\(4y-3z=0\)       (2)

TỪ (1) VÀ (2)  \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y-z}{2+3-4}=\frac{-10}{1}=-10\)

\(\Rightarrow\frac{x}{2}=-10\Rightarrow x=-20\)

\(\frac{y}{3}=-10\Rightarrow y=-30\)

\(\frac{z}{4}=-10\Rightarrow z=-40\)

11 tháng 8 2020

Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(\Rightarrow\frac{4\left(3x-2y\right)}{4.4}=\frac{3\left(2z-4x\right)}{3.3}=\frac{2\left(4y-3z\right)}{2.2}\)

\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)

\(\left\{{}\begin{matrix}\frac{12x-8y}{16}=0\Rightarrow12x-8y=0\Rightarrow12x=8y\\\frac{6z-12x}{9}=0\Rightarrow6z-12x=0\Rightarrow6z=12x\end{matrix}\right.\)

\(\Rightarrow12x=8y=6z\)

\(\Rightarrow\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{12}+\frac{1}{8}+\frac{1}{6}}=\frac{18}{\frac{3}{8}}=18.\frac{8}{3}=48\)

\(\left\{{}\begin{matrix}\frac{x}{\frac{1}{12}}=48\Rightarrow x=48.\frac{1}{12}=4\\\frac{y}{\frac{1}{8}}=48\Rightarrow y=48.\frac{1}{8}=6\\\frac{z}{\frac{1}{6}}=48\Rightarrow z=48.\frac{1}{6}=8\end{matrix}\right.\)

14 tháng 4 2019

\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(=\frac{12x-8y}{4^2}=\frac{6z-12x}{3^2}=\frac{8y-6z}{2^2}\)

\(=\frac{12x-8y+6z-12x+8y-6z}{4^2+3^3+2^2}\)

\(=\frac{\left(12x-12x\right)-\left(8y-8y\right)+\left(6z-6z\right)}{16+9+4}\)

\(=\frac{0-0-0}{16+9+4}=0\)

\(\Rightarrow\hept{\begin{cases}3x-2y=0\\2z-4x=0\\4y-3z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{z}{4}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{4}\end{cases}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}}\)

14 tháng 4 2019

Ta có :

\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(\Rightarrow\frac{3xz-2y}{4z}=\frac{2yz-4xy}{3y}=\frac{4xy-3xz}{2x}\)

\(\Rightarrow\frac{\left(3xz-2y\right)+\left(2yz-4xy\right)+\left(4xy-3xz\right)}{4z+3y+2x}=0\)

\(\Rightarrow\hept{\begin{cases}3x-2y=0\\2z-4x=0\end{cases}\Rightarrow\hept{\begin{cases}3x=2y\\2z=4x\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\end{cases}\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)}\)

Bạn tham khảo ở đây nhé:

Câu hỏi của Su su - Toán lớp 7 | Học trực tuyến

5 tháng 11 2019

Chúc bạn học tốt!