\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)   hay \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

1/xy + 1/yz +1/zx=1

=>1/xy+1/yz=1-1/zx

=>z/xyz+x/xyz=xz-1/zx=>x+z/xyz=(xz-1)*y/xyz=>x+z=(xz-1)*y=>x+z=xyz-1=x+y+z-1=>y=1

Lần lượt bạn làm như vậy từ đề bài ta suy ra tiếp theo làm 1/xy+1/zx=1-1/yz r làm tương tự như trên sẽ ra đáp án cách mình không hay lắm nhA! Mk sẽ cố gắng làm cách hay hơn nx nhưng cần thời gian mong bạn thông cảm 

12 tháng 1 2018

\(A=\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+1+x}\)

\(=\frac{xy+x+1}{xy+x+1}=1\)

12 tháng 1 2018

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+1}+\frac{1}{xy+1+x}\)

\(\frac{x+xy+1}{xy+x+1}=1\)

11 tháng 3 2020

Ta có : \(A=\frac{2019}{x+xy+1}+\frac{2019}{y+yz+1}+\frac{2019}{z+zx+1}=2019\left(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\right)\)

\(=2019\left(\frac{z}{xz+xyz+z}+\frac{xz}{xyz+xyz^2+xz}+\frac{1}{z+zx+1}\right)\)

\(=2019\left(\frac{z}{xz+z+1}+\frac{xz}{1+z+xz}+\frac{1}{z+zx+1}\right)\)(vì xyz = 1)

\(=2019\left(\frac{z+xz+1}{xz+z+1}\right)=2019\)

Vậy A = 2019

7 tháng 2 2021

giúp mình với nhé!

1 tháng 9 2021

Hello hikaru nakamura

9 tháng 9 2021

k ai trả lời đc ah

21 tháng 3 2020

Do \(xyz=1\)nên:

\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xz+z+1}=1\)

\(=\frac{1}{xy+x+1}+\frac{x}{xyz+xy+z}+\frac{xy}{x^2yz+xyz+xy}\)

\(=\frac{1}{xy+x+1}+\frac{x}{1+xy+x}+\frac{xy}{x+1+y}=1\)

=> ĐPCM

22 tháng 3 2020

\(xyz=1\) nên tồn tại \(x=\frac{a}{b};y=\frac{b}{c};z=\frac{c}{a}\)

\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{zx+z+1}\)

\(=\frac{1}{\frac{a}{b}\cdot\frac{b}{c}+\frac{a}{b}+1}+\frac{1}{\frac{b}{c}\cdot\frac{c}{a}+\frac{b}{c}+1}+\frac{1}{\frac{c}{a}\cdot\frac{a}{b}+\frac{c}{a}+1}\)

\(=\frac{1}{\frac{a}{c}+\frac{a}{b}+1}+\frac{1}{\frac{b}{a}+\frac{b}{c}+1}+\frac{1}{\frac{c}{b}+\frac{c}{a}+1}\)

\(=\frac{bc}{ab+ac+cb}+\frac{ac}{bc+ab+ac}+\frac{ab}{ac+bc+ab}\)

\(=\frac{ab+bc+ca}{ab+bc+ca}=1\)

29 tháng 9 2016

b. Ta có : xy.yz.zx=3/5.4/5.3/4

      =) x^2.y^2.z^2=9/25

     (=)    (x.y.z)^2  =9/25

    mà     (x.y.z)^2  =(3/5)^2

     (=)      x.y.z       =3/5

*Ta có xy=3/5

=)  xyz =3/5

=)3/5.z =3/5

=)    z   =3/5:3/5

(=)  z    =1

*Ta có: yz=4/5

=)  xyz =3/5

=) x.4/5=3/5

=)    x   =3/5:4/5

=)    x   =  3/4

*Ta có: zx=3/4

 =) xyz =3/5

(=) xzy =3/5

 =)3/4.y=3/5

 =)   y   =3/5:3/4

 =)   y   =4/5

Vậy x=3/4, y=4/5, z=1

3 tháng 3 2020

tại sao bạn => được \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=0\)