\(\dfrac{6\text{x}-3\text{z}}{5}\)=\(\dfrac{4y-6\text...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

a)ta có 4+x/7+y=4/7

<=>7x+28=28+4y

<=> 7x=4y

lại có x+y=22

=>4/7y+y=22

<=>11/7y=22 <=> y=14

<=> x= 4/7*14=8

vậy x=8, y=14

12 tháng 3 2018

b) Từ x/3=y/4 va y/5=z/6-->x/15=y/20=z/24 (1)
(1) = 2x/30=3y/60=4z/96=(2x+3y+4z)/186 (2) (t/c dãy tỉ số bằng nhau)
Ta lại có
(1) = 3x/45=4y/80=5z/120=(3x+4y+5z)/245 (3)(t/c dãy tỉ số bằng nhau)
Từ (2)(3) ta có(2x+3y+4z)/186=(3x+4y+5z)/245
Vậy M = (2x+3y+4z)/(3x+4y+5z)=186/245

6 tháng 8 2018

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Theo tính chất của dãy tỉ số bằng nhau, có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

Kết luận ...

2 tháng 7 2018

a. Có \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\) => \(\dfrac{x}{4}=\dfrac{3x}{9}=\dfrac{4z}{36}\) và x-3y+4z=62

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)= \(\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)

=> x=8

3y=18=>y=6

4z=72=>z=18

Vậy x=8 ; y=6 ; z=18

2 tháng 7 2018

b, Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\\ =\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot4=12\end{matrix}\right.\\ vậy...\)

Câu c bạn làm tương tự nhé!

d, Ta có : \(\left|x+y-z\right|=95\Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\)

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\\ =\dfrac{x+y-z}{15+10-6}=\dfrac{x+y-z}{19}\\ \Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=15\cdot5=75\\y=10\cdot5=50\\z=6\cdot5=30\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\cdot15=-75\\y=-5\cdot10=-50\\z=-5\cdot6=-30\end{matrix}\right.\end{matrix}\right.\)

Vậy...

30 tháng 10 2018

a) Ta có: 3x = 2y; 4x = 2z

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)

\(\dfrac{x}{2}=3\) ⇒ x = 6

\(\dfrac{y}{3}=3\) ⇒ y = 9

\(\dfrac{z}{4}=3\) ⇒ z = 12

Vậy x = 6 ; y = 9 ; z = 12

b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)

và 2x2 + 3y2 - 5z2 = -405

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)

+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2

⇒ x2 = 36 ⇒ x = 6 hoặc x = -6

+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3

⇒ y2 = 81 ⇒ y = 9 hoặc y = -9

+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5

⇒ z2 = 144 ⇒ z = 12 hoặc z = -12

Vậy...................................( bạn tự vậy nhé )

c) Giống câu a ( bạn tự chép lại )

d) Mik ko bt lm

30 tháng 10 2018

CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!

Ta có x/3=3y/2

nên \(\dfrac{x}{3}=\dfrac{y}{\dfrac{2}{3}}\)

\(\Leftrightarrow\dfrac{x}{3}\cdot\dfrac{1}{6}=\dfrac{y}{\dfrac{2}{3}}\cdot\dfrac{1}{6}\)

=>x/18=y/4

=>x/54=y/12

\(\dfrac{4y}{3}=\dfrac{z}{5}\)

nên \(\dfrac{y}{\dfrac{3}{4}}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{y}{\dfrac{3}{4}}\cdot\dfrac{1}{60}=\dfrac{z}{5}\cdot\dfrac{1}{60}\)

=>y/45=z/300

=>y/3=z/20

=>y/12=z/80

=>x/54=y/12=z/80

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{54}=\dfrac{y}{12}=\dfrac{z}{80}=\dfrac{2x+3y-z}{2\cdot54+3\cdot12-80}=\dfrac{-7}{64}\)

Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{189}{32}\\y=-\dfrac{21}{16}\\z=-\dfrac{35}{4}\end{matrix}\right.\)

15 tháng 7 2017

\(\dfrac{x-2}{4}=\dfrac{y+1}{5}=\dfrac{z+3}{7}\)

\(\Rightarrow\dfrac{2\left(x-2\right)}{8}=\dfrac{y+1}{5}=\dfrac{2\left(z+3\right)}{14}\)

\(\Rightarrow\dfrac{2x-4}{8}=\dfrac{y+1}{5}=\dfrac{2z+6}{14}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(=\dfrac{2x-4+y+1-2z-6}{8+5-14}\)

\(=\dfrac{2x+y-2z-9}{-1}\)

\(=\dfrac{7-9}{-1}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-2}{4}=2\Rightarrow x-2=8\Rightarrow x=10\\\dfrac{y+1}{5}=2\Rightarrow y+1=10\Rightarrow y=9\\\dfrac{z+3}{7}=2\Rightarrow z+3=14\Rightarrow z=11\end{matrix}\right.\)

NV
23 tháng 2 2019

a/ Do \(x+y=22\Rightarrow y=22-x\)

\(\Rightarrow\dfrac{4+x}{7+22-x}=\dfrac{4}{7}\Leftrightarrow\dfrac{4+x}{29-x}=\dfrac{4}{7}\)

\(\Leftrightarrow7\left(4+x\right)=4\left(29-x\right)\Leftrightarrow28+7x=116-4x\)

\(\Leftrightarrow11x=88\Rightarrow x=8\)

\(\Rightarrow y=22-x=14\)

b/ \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow y=\dfrac{4x}{3}\)

\(\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow z=\dfrac{6y}{5}\) \(\Rightarrow z=\dfrac{6}{5}\left(\dfrac{4x}{3}\right)=\dfrac{8x}{5}\)

Vậy \(M=\dfrac{2x+3y+4z}{3x+4y+5z}=\dfrac{2x+3.\dfrac{4x}{3}+4.\dfrac{8x}{5}}{3x+4.\dfrac{4x}{3}+5.\dfrac{8x}{5}}\)

\(\Rightarrow M=\dfrac{x\left(2+4+\dfrac{32}{5}\right)}{x\left(3+\dfrac{16}{3}+8\right)}=\dfrac{\dfrac{62}{5}}{\dfrac{49}{3}}=\dfrac{186}{245}\)

23 tháng 2 2019

Câu a:

Ta có: \(x+y=22\Rightarrow y=22-x\)

\(\Rightarrow\dfrac{4+x}{7+22-x}=\dfrac{4}{7}\Leftrightarrow\dfrac{4+x}{29-x}=\dfrac{4}{7}\)

\(\Leftrightarrow7\left(4+x\right)=4\left(29-x\right)\Leftrightarrow28+7x=116-4x\)

\(\Leftrightarrow11x=88\Rightarrow x=8\)

\(\Rightarrow y=22-x=22-8=14\)

Vậy \(x=8,y=14\)

29 tháng 10 2017

x/3=y/4 -> y=4x/3 (1)
y/5=z/6 -> y=5z/6 (2)

(1)+(2) -> x=5z/8 thay vào M=\(\dfrac{2.\dfrac{5z}{8}+3.\dfrac{5z}{6}+4z}{3.\dfrac{5z}{8}+4.\dfrac{5z}{6}+5z}\)=\(\dfrac{186}{245}\)