\(\frac{x}{3}\)=\(\frac{y}{5}\)và x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

a) \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{25}\)

Theo tinh chất dãy tỉ số bằng nhau

Ta có: \(\frac{x^2}{9}=\frac{y^2}{25}=\frac{x^2-y^2}{9-25}=\frac{-4}{-16}=\frac{1}{4}\)

\(\Rightarrow x^2=\frac{1}{4}.9=\frac{9}{4}\Rightarrow x=\orbr{\begin{cases}\frac{3}{2}\\\frac{-3}{2}\end{cases}}\)

     \(y^2=\frac{1}{4}.25=\frac{25}{4}\Rightarrow y=\orbr{\begin{cases}\frac{5}{2}\\\frac{-5}{2}\end{cases}}\)

Vậy (x;y) = (\(\frac{3}{2};\frac{5}{2}\) ) ; (\(\frac{-3}{2};\frac{-5}{2}\) )

b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-5}=5\)

\(\Rightarrow x=5.2=10\)

    \(y=5.3=15\)

    \(z=5.4=20\)

26 tháng 8 2018

a, \(\frac{x}{3}=\frac{y}{5}\)

\(\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{5^2}\)

\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{25}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{y^2}{25}=\frac{x^2-y^2}{9-25}=\frac{-4}{-16}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\cdot3=\frac{3}{4}\\y=\frac{1}{4}\cdot5=\frac{5}{4}\end{cases}}\)

vậy_

b, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)

\(\Rightarrow\hept{\begin{cases}x=5\cdot2=10\\y=5\cdot3=15\\z=5\cdot4=20\end{cases}}\)

vậy_

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

24 tháng 3 2020

a) Ta có : \(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)=> \(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}\)=> \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\)

=> \(\frac{x^2}{\frac{9}{4}}=\frac{y^2}{\frac{16}{9}}=\frac{z^2}{\frac{36}{25}}\)

Đặt \(\frac{x^2}{\frac{9}{4}}=\frac{y^2}{\frac{16}{9}}=\frac{z^2}{\frac{36}{25}}=k\Leftrightarrow\hept{\begin{cases}x^2=\frac{9}{4}k\\y^2=\frac{16}{9}k\\z^2=\frac{36}{25}k\end{cases}}\)

=> \(x^2+y^2+z^2=\frac{9}{4}k+\frac{16}{9}k+\frac{36}{25}k\)

=> \(\frac{4921}{900}k=724\)

=> \(k=724:\frac{4921}{900}=\frac{651600}{4921}\)

Do đó : \(\hept{\begin{cases}x^2=\frac{9}{4}\cdot\frac{651600}{4921}\\y^2=\frac{16}{9}\cdot\frac{651600}{4921}\\z^2=\frac{36}{25}\cdot\frac{651600}{4921}\end{cases}}\)

Bài toán đây có sai sót j không vậy?Thấy số dữ quá đi :v

b) Ta có : \(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}\)

=> \(\frac{x-1}{2}=\frac{2y+4}{6}=\frac{3z-9}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x-1}{2}=\frac{2y+4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}=\frac{46-6}{8}=\frac{40}{8}=5\)

=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y+2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\Rightarrow\hept{\begin{cases}x=11\\y=13\\z=23\end{cases}}\)

c) Đặt \(\frac{x}{3}=\frac{y}{16}=k\Rightarrow\hept{\begin{cases}x=3k\\y=16k\end{cases}}\)

=> xy = 16k . 3k

=> 48k2 = 192

=> k2 = 4

=> k = 2 hoặc k = -2

Do đó \(\left(x,y\right)\in\left\{\left(6,32\right);\left(-6,-32\right)\right\}\)

24 tháng 3 2020

Bài 2 : a) \(\frac{4^2\cdot25^2+16\cdot125}{2^3\cdot5^2}\)

\(=\frac{\left(2^2\right)^2\cdot\left(5^2\right)^2+16\cdot125}{2^3\cdot5^2}\)

\(=\frac{2^4\cdot5^4+2^4\cdot5^3}{2^3\cdot5^2}\)

\(=\frac{2\cdot2^3\left(5^4+5^3\right)}{2^3\cdot5^2}\)

\(=\frac{2\cdot5^3\left(5+1\right)}{5^2}=\frac{2\cdot5\cdot5^2\cdot6}{5^2}=2\cdot5\cdot6=60\)

b) \(\frac{6^8\cdot2^4-4^5\cdot18^4}{27^3\cdot8^4-3^9\cdot2^{13}}\)

\(=\frac{\left(2\cdot3\right)^8\cdot2^4-\left(2^2\right)^5\cdot\left(2\cdot3^2\right)^4}{\left(3^3\right)^3\cdot\left(2^3\right)^4-3^9\cdot2^{13}}\)

\(=\frac{2^8\cdot3^8\cdot2^4-2^{10}\cdot2^4\cdot3^8}{3^9\cdot2^{12}-3^9\cdot2^{13}}\)

\(=\frac{2^{12}\cdot3^8-2^{14}\cdot3^8}{3^9\left(2^{12}-2^{13}\right)}\)

\(=\frac{3^8\left(2^{12}-2^{14}\right)}{3^9\left(2^{12}-2^{13}\right)}=\frac{3^8\left(2^{12}-2^{14}\right)}{3^8\left(2^{12}-2^{13}\right)\cdot3}=1\)

21 tháng 11 2019

BÀi 2:

Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)

a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)

b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)

c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)

d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)

21 tháng 11 2019

b)Vì BCNN(3;5) = 15

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)

Vậy...

c)Vì BCNN(2;3;5) = 30

\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

WTFFFFFF>>>

d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính

e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)

Vậy...

16 tháng 9 2017

Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)

\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)

Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)

          \(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)

             \(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)

Vậy ,,,,,,,,,,,,,,,,,,

7 tháng 8 2019

NHỚ tick cho mik nhá!

Hỏi đáp Toán

a) \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x-2y+z}{5-6+4}=\frac{6}{3}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\\\frac{2y}{6}=2\\\frac{z}{4}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5.2\\2y=6.2\\z=4.2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=8\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)=\left(10,6,8\right)\)

b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}=\frac{x^2-2y^2+z^2}{4-18+16}=\frac{8}{2}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\\z^2=64\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\\z=\pm8\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)\in\left\{\left(-4,-6,-8\right),\left(4,6,8\right)\right\}\)

12 tháng 10 2019

Bài 1:

\(A=\frac{a+b}{b+c}.\)

Ta có:

\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)

\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)

\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)

\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)

Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)

Bài 2:

a) \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow648+280=7x+9x\)

\(\Rightarrow928=16x\)

\(\Rightarrow x=928:16\)

\(\Rightarrow x=58\)

Vậy \(x=58.\)

b) \(\frac{x+4}{20}=\frac{5}{x+4}\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow x+4=\pm10.\)

\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)

Vậy \(x\in\left\{6;-14\right\}.\)

Chúc bạn học tốt!

12 tháng 10 2019

Bài 2:

a, \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow9.72-9.x=7.x-7.40\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow-9x-7x=-280-648\)

\(\Rightarrow-16x=-648\)

\(\Rightarrow x=58\)

Vậy \(x=58\)