\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\) và x+y+z=49

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

a) Ta có:

\(x+y+z=49\Rightarrow12x+12y+12z=588\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{588}{49}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.3:2\\y=12.4:3\\z=12.5:4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

8 tháng 10 2017

a,3x=2y;7y=5z

=>\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta co:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\\ \Rightarrow x=2.10=20\\ y=2.15=30\\ z=2.21=42\)

Các câu sau tương tự

10 tháng 10 2017

b,\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\),\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và 2x-3y+z=6

Từ đề bài ta có:

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)\(\Rightarrow\)\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)(2)

từ (1) và (2)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)\(\Rightarrow\)\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)=\(\dfrac{2x-3y+z}{18-36+20}\)=\(\dfrac{6}{2}\)=3

\(\Rightarrow\)x=3.9=27

y=3.12=36

z=3.20=60

Vậy.....

chúc bạn học tốt,nhớ tick cho mình nhaleuleu

31 tháng 7 2017

d) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)\(xyz=810\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

=> \(x=2k\) ; \(y=3k\) ; \(z=5k\)

Thay \(x=2k;y=3k;z=5k\) vào \(xyz=810\) ta được

\(2k.3k.5k=810\)

\(30k=810\)

\(k^3=27\)

=> k = 3

=> \(x=2.3=6\)

=> \(y=3.3=9\)

=> \(z=5.3=15\)

19 tháng 1 2018

a) Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

\(=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\cdot\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\)

\(\Rightarrow\dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\)

\(\Rightarrow\dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\)

\(\Rightarrow\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\)

+) \(x+y+z=\dfrac{1}{2}\Rightarrow y+z=\dfrac{1}{2}-x\)

Thay vào \(y+z+1=2x\) ; ta có :

\(\dfrac{1}{2}-x+1=2x\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)

+) \(x+y+z=\dfrac{1}{2}\Rightarrow x+z=\dfrac{1}{2}-y\)

Thay vào \(x+z+2=2y\) ; ta có :

\(\dfrac{1}{2}-y+2=2y\Rightarrow3y=\dfrac{5}{2}\Rightarrow y=\dfrac{5}{6}\)

+) \(x+y+z=\dfrac{1}{2}\Rightarrow x+y=\dfrac{1}{2}-z\)

Thay vào \(x+y-3=2z\) ; ta có :

\(\dfrac{1}{2}-z-3=2z\Rightarrow3z=\dfrac{-5}{2}\Rightarrow z=\dfrac{-5}{6}\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)

2 tháng 8 2018

Biểu đồBiểu đồ

2 tháng 8 2018

a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

⇒2x = 3.30 = 90 ⇒ x = 45

3y = 3.60 = 180 ⇒ y = 60

z = 3.28 = 84

Ý b) có gì đó sai sai ?

c)Ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

⇒x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

d)Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)

⇒ x = 2k ; y = 3k ; z = 5k

⇒ xyz = 2k.3k.5k = 30k3 = 810

⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
2 tháng 7 2018

a. Có \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\) => \(\dfrac{x}{4}=\dfrac{3x}{9}=\dfrac{4z}{36}\) và x-3y+4z=62

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)= \(\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)

=> x=8

3y=18=>y=6

4z=72=>z=18

Vậy x=8 ; y=6 ; z=18

2 tháng 7 2018

b, Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\\ =\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot4=12\end{matrix}\right.\\ vậy...\)

Câu c bạn làm tương tự nhé!

d, Ta có : \(\left|x+y-z\right|=95\Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\)

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\\ =\dfrac{x+y-z}{15+10-6}=\dfrac{x+y-z}{19}\\ \Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=15\cdot5=75\\y=10\cdot5=50\\z=6\cdot5=30\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\cdot15=-75\\y=-5\cdot10=-50\\z=-5\cdot6=-30\end{matrix}\right.\end{matrix}\right.\)

Vậy...

18 tháng 8 2017

a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)

\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)

Đến đây tự làm tiếp nhé

b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=> x = 75, y = 50, z = 30

c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)

\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)

\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)

\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)

=> x=... , y=... , z=...

d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)

Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3

Với k = 3 => x = 6, y = 15

Với k = -3 => x = -6, y = -15

Vậy...

e, Tương tự câu d

18 tháng 8 2017

b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)

=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)

     \(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)

      \(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{x+y+z}{10+6+21}=\dfrac{25}{37}\)

Do đó: x=250/37; y=150/37; z=525/37

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: Ta có: x/2=y/3

nên x/8=y/12(1)

Ta có: y/4=z/5

nên y/12=z/15(2)

Từ (1) và (2) suy ra x/8=y/12=z/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

Do đó: x=16; y=24; z=30

3 tháng 8 2017

\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

\(=\dfrac{2x-3y+z}{18-36+20}\)

\(=\dfrac{6}{2}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.9=27\\y=3.12=36\\z=3.20=60\end{matrix}\right.\)

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

\(\Rightarrow x.\dfrac{2}{3}=y.\dfrac{3}{4}=z.\dfrac{4}{5}\)

\(\Rightarrow x:\dfrac{3}{2}=y:\dfrac{4}{3}=z:\dfrac{5}{4}\)

\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

\(=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}\)

\(=\dfrac{49}{\dfrac{49}{12}}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.\dfrac{3}{2}=18\\y=12.\dfrac{4}{3}=16\\z=12.\dfrac{5}{4}=15\end{matrix}\right.\)

4 tháng 8 2017

Ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)

\(\dfrac{y}{3}=\dfrac{z}{5}=>\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)

Từ (1),(2)=>\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)=\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)

=>\(\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

6 tháng 8 2017

bn cần gấp ko mk làm cho

27 tháng 9 2017

Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{12.\left(x+y+z\right)}{49}\)

\(=\dfrac{12.49}{49}=12\)

\(\Rightarrow\dfrac{2x}{3}=12\Rightarrow x=18\)

\(\dfrac{3y}{4}=12\Rightarrow y=16\)

\(\dfrac{4z}{5}=12\Rightarrow z=15\)

Vậy \(x=18;y=16;z=15\)

19 tháng 11 2017

Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

\(\dfrac{x}{\dfrac{3}{2}}=12\Rightarrow x=12.\dfrac{3}{2}=18\)

\(\dfrac{y}{\dfrac{4}{3}}=12\Rightarrow y=12.\dfrac{4}{3}=16\)

\(\dfrac{y}{\dfrac{5}{4}}=12\Rightarrow y=12.\dfrac{5}{4}=15\)

Vậy x;y;z lần lượt là 18;16;15