K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2023

3/ Ta có:

\(A=\dfrac{1-2x}{x+3}\)

\(A=\dfrac{-2x+1}{x+3}\)

\(A=\dfrac{-2x-6+7}{x+3}\)

\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)

\(A=-2+\dfrac{7}{x+3}\)

A nguyên khi \(\dfrac{7}{x+3}\) nguyên 

⇒ 7 ⋮ \(x+3\)

\(\Rightarrow x+3\inƯ\left(7\right)\)

\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)

16 tháng 10 2021

a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)

Áp dụng t/c dãy tỏ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)

16 tháng 10 2021

b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)

20 tháng 2 2021

Ta có: \(\left(x+2\right)^2+4\ge4\Rightarrow\dfrac{20}{3\left|y+2\right|+5}\ge4\)

\(\Rightarrow3\left|y+2\right|+5\le5\)

\(\Rightarrow\left|y+2\right|=0\Rightarrow y=-2\)

Vậy x=y=-2

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

Bài b cũng xét tương tự bạn nhé.

25 tháng 12 2018

a) Theo đề, ta có:

    2.x = 3.y = 4.z

=> 2.x/12 = 3.y/12 = 4.z/12

=> x/6 = y/4 = z/3

mà 2.x  + 3.y - 5.z = -1,8

Áp dụng tính chất dãy tỉ số bằng nhau:

x/6 = y/4 = z/3 = 2.x + 3.y - 5.z / 2.6 + 2.4 + 2.3 = -1,8/26 = a

=> x=a.6=b

=> y=a.4=c

=> z=a.3=d

Bn tính ra nhé, thay vào a,b,c,d

Tk cho mk nhé ae!!!!!!!

25 tháng 12 2018

b) Theo đề, ta có:

2/3.x = 3/4.y = 5/6 .z

=>x/3/2 = y/4/3 = z/6/5

mà 2.y + x + z = -39

Áp dụng tính chất dãy tỉ số bằng nhau:

x/3/2 = y/4/3 = z/6/5 = 2.y + x + z2.4/3 + 3/2 +6/5  =-39/161/30=a

=>x = a.3/2 = b

=>y = a.4/3 = c

=>z = a.6/5 = d

Thay vào a,b,c,d dùm mk, mk ko có máy tính tay nên ko tính đc

Tk cho mk nhé ae!!!!!!!!!!!

11 tháng 7 2023

Từ 3 phương trình trên

\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)

\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)

+ Với \(x+y+z=3\) Thay vào từng phương trình ta có

\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)

+ Với \(x+y+z=-3\) Thay vào từng phương trình có

\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)

11 tháng 7 2023

Sorry trường hợp thứ 2 \(y=-3\)

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$

$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$

$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$

Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$

$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$