Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm X:Y\(\in Z\)biết
a] [x-7]\(\times\left[xy+1\right]\)=9
b] \(\frac{x-4}{y-3}=\frac{4}{3}\)với x-y=5
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Từ các đẳng thức trên :
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=2+3-5=0\)
\(\Rightarrow2x+2y+2z=2\left(x+y+z\right)=0\Rightarrow x+y+z=0\)
\(\Rightarrow z=\left(x+y+z\right)-\left(x+y\right)=0-2=-2\)
\(\Rightarrow x=\left(x+y+z\right)-\left(y+z\right)=0-3=-3\)
\(\Rightarrow y=\left(x+y+z\right)-\left(z+x\right)=0-\left(-5\right)=5\)