
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
Trần Việt Anh cop gi ma ngu the :( cop xong ghi nguon vào ho to :))
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow\frac{\left(x-2009\right)^2}{\left(\frac{5}{2\sqrt{2}}\right)^2}+\frac{\left(y-0\right)^2}{5^2}=0\)
\(\Rightarrow x,y\in\left(2009;5\right)\)


1,\(\frac{xyz+x+z}{yz+1}=\frac{10}{7}\Rightarrow\frac{x\left(yz+1\right)+z}{yz+1}=\frac{10}{7}\)
\(\Leftrightarrow x+\frac{z}{yz+1}=\frac{10}{7}\Leftrightarrow x+\frac{1}{\frac{yz+1}{z}}=\frac{10}{7}\)
\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}=1+\frac{1}{\frac{7}{3}}=1+\frac{1}{2+\frac{1}{3}}\)
Nên x=1,y=2,z=3 bài này thiếu điều kiện x,y,z nhé
2,bài 2 để mai anh xem nha

Giả sử rằng \(x\le y\)
\(2^x+2^y=2^{x+y}\Leftrightarrow2^{x+y}-2^x-2^y=0\Leftrightarrow2^x\left(2^y-2^{y-x}-1\right)=0\left(1\right)\)
\(\left(1\right)\Rightarrow\orbr{\begin{cases}2^x=0\\2^y-2^{y-x}-1=0\end{cases}}\)
Không có số \(x\inℕ^∗\)nào thỏa mãn \(2^x=0\), do đó \(2^y-2^{y-x}-1=0\left(2\right)\)
\(\left(2\right)\Leftrightarrow2^y-2^{y-x}=1\Leftrightarrow2^{y-x}\left(2^x-1\right)=1\Rightarrow2^{y-x}=2^x-1=1\Leftrightarrow x=y=1\)
Với trường hợp \(y\ge x\)thì tương tự như trên, ta cũng tìm ra được đáp án là \(y=x=1\)
Vậy ta tìm được một bộ \(\left(x;y\right)\)thỏa mãn là \(\left(1;1\right)\)

Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\in Z\Rightarrow x+1\inƯ\left(1\right)\Rightarrow x+1\in\left\{-1;1\right\}\Rightarrow x\in\left\{-2;0\right\}\)
\(+,x=0;\Rightarrow\frac{x}{x+1}=0\left(tm\right);+,x=-2\Rightarrow\frac{x}{x+1}=\frac{-2}{-1}=2\left(tm\right)\)
Vậy: x E {0;2}
b, \(\frac{a}{2010}=\frac{b}{2012}=\frac{c}{2014}\Rightarrow a=2010k;b=2012k;c=2014k\left(k\in Z\right)\)
\(\frac{\left(a-c\right)^2}{4}=\frac{\left(-4k\right)^2}{4}=\frac{16k^2}{4}=4k^2\)và: \(\left(a-b\right)\left(b-c\right)=\left(-2k\right)\left(-2k\right)=4k^2\)
\(\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)\(\left(ĐPCM\right)\)
c, Ta có:
\(25-y^2=8.x^2\Rightarrow25-y^2⋮8\Rightarrow y^2:8\left(dư1\right)\left(y\le5\right)\Rightarrow y\in\left\{1;3;5\right\}\)
Ta lần lượt thử ta thấy:
\(25-y^2=8.x^2\left(tm\right)\Leftrightarrow y=5\Rightarrow x=0\)
Vậy: y=5;x=0

làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50

\(1+5^x=2^y+5.2^z\)
+) Với \(x\inℕ^∗\)
Xét: VT = \(1+5^x\)chia 4 dư 2 và chia 5 dư 1
+) Với \(y,z\inℕ^∗\)
Xét VP = \(2^y+5.2^z\)
TH1: y , z > 1
=> VP = \(2^y+5.2^z\)chia hết cho 4
=> loại
TH2: y , z = 1
=> VP = 12 chia hết cho 4
=> loại
TH3: y = 1, z > 1
=> VP = \(2+5.2^z\)chia 5 dư 2
=> loại
TH4: y > 1, z = 1
=> Ta có phương trình: \(5^x=2^y+9\)
Với y = 2 thì \(5^x=13\)loại
Với y > 2. khi đó: \(2^y+9\) chia 8 dư 1 => \(5^x\)chia 8 dư 1 => x là số chẵn => Đặt x = 2k ( k là số tự nhiên >1)
Ta có phương trình:\(5^{2k}-9=2^y\)
<=> \(\left(5^k-3\right)\left(5^k+3\right)=2^y\)
Khi đó tồn tại hai số tự nhiên a, b sao cho: a + b = y và a > b để:
\(\hept{\begin{cases}5^k+3=2^a\\5^k-3=2^b\end{cases}}\)=> \(2^a-2^b=6\)(1)
Với : b > 2 => \(2^a-2^b⋮8\)loại
Với : b = 2 => \(2^a-4=6\)=> loại
Với b = 1 => \(2^a-2=6\)=> \(2^a=8=2^3\)=> a = 3
Với b = 0 => \(2^a-1=6\)loại
Vậy b = 1 và a = 3 là thỏa mãn (1)
=> y = a + b = 4
=> \(5^x=2^4+9=25=5^2\)
=> x = 2
Ta thử lại với x = 2; y = 4 ; z = 1 thấy thỏa mãn
Vậy: x =2 ; y = 4 ; z = 1.