K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TA
14 tháng 1 2018
Ta co : \(\dfrac{2\sqrt{x.\left(x-z\right)}}{2}\le\dfrac{x+x-z}{2}\)
\(\dfrac{2\sqrt{z\left(y-x\right)}}{2}\le\dfrac{z+y-x}{2}\)
VT≤\(\dfrac{2x-z}{2}+\dfrac{z+y-x}{2}=\dfrac{2x-z+z+y-x}{2}\)
=\(\dfrac{x+y}{2}\le\sqrt{xy}\)
=> DPCM
Toan bo dung bdt Co Si nha
NT
0
6 tháng 11 2017
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
6 tháng 11 2017
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
8 tháng 11 2019
Câu hỏi của Đỗ Tuấn Linh - Toán lớp 9 - Học toán với OnlineMath
\(x^3-y^3=7\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)=7\left(x-y\right)\)
\(\Leftrightarrow x^2+xy+y^2=7\)
Nếu \(y\ge2\Rightarrow x\ge3\Rightarrow x^2+xy+y^2>9>7\) (ktm)
\(\Rightarrow y< 2\Rightarrow y=1\)
\(\Rightarrow x^2+x+1=7\Rightarrow x\)
\(\Leftrightarrow x^3-y^3+7y-7x=0\\ \Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-7\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-7\right)=0\\ \Leftrightarrow x^2+xy+y^2-7=0\left(x>y\Leftrightarrow x-y>0\right)\\ \Leftrightarrow x^2+xy+y^2=7\)
Vì \(x>y>0\) nên \(x^2< 7\)
Mà \(x\in Z\Leftrightarrow x^2\in\left\{1;4\right\}\)
Với \(x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y^2+y-6=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-3\end{matrix}\right.\\x=-1\Rightarrow y^2-y-6=0\Rightarrow\left[{}\begin{matrix}y=-2\\y=3\end{matrix}\right.\end{matrix}\right.\)
Với \(x^2=4\Leftrightarrow\left[{}\begin{matrix}x=2\Rightarrow y^2+2y-3=0\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\\x=-2\Rightarrow y^2-2y-3=0\Rightarrow\left[{}\begin{matrix}y=-1\\y=3\end{matrix}\right.\end{matrix}\right.\)
Vậy ...(loại mấy TH x,y<0 ra)