Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta luôn có:
\(xy+yz+zx\le x^2+y^2+z^2\)\(=3\); dấu "=" xảy ra ⇔\(x=y=z\)
\(x\le\frac{x^2+1}{2}\); dấu "=" xảy ra ⇔ \(x=1\)
\(y\le\frac{y^2+1}{2}\); dấu "=" xảy ra ⇔ \(y=1\)
\(z\le\frac{z^2+1}{2}\); dấu "=" xảy ra ⇔ \(z=1\)
Suy ra: \(x+y+z\le\frac{x^2+y^2+z^2+3}{2}=\frac{6}{2}=3\)
Do đó: \(P_{max}=xy+yz+zx+\frac{5}{x+y+z}\le3+\frac{5}{3}=\frac{14}{3}\)
Dấu "=" xảy ra ⇔ x=y=z=1
\(xz=y^2\Rightarrow2xz=2y^2\)
\(x^2+z^2+99=7y^2\)
\(\Rightarrow x^2+z^2+2xz+99=7y^2+2y^2\)
\(\Rightarrow\left(x+z\right)^2+99=9y^2=\left(3y\right)^2\)
\(\Rightarrow\left(x+z\right)^2-\left(3y\right)^2=-99\)
\(\Rightarrow\left(x+z+3y\right)\left(x+z-3y\right)=-99=-\left(9.11\right)=-\left(3.33\right)=-\left(99.1\right)\)
Gọi: \(x+z=a;3y=b\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)=-\left(99.1\right)=-\left(3.33\right)=-\left(99.1\right)\)
Trường hợp 1: \(\left(a+b\right)\left(a-b\right)=-\left(9.11\right)\)
\(\Rightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a+b=11\\a-b=-9\end{matrix}\right.\\\left\{{}\begin{matrix}a+b=9\\a-b=-11\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1\\b=10\end{matrix}\right.\\\left\{{}\begin{matrix}a=-1\\b=10\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+z=1\\3y=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+z=-1\\3y=10\end{matrix}\right.\end{matrix}\right.\) \(\left(ktm\right)\)
Trường hợp 2: \(\left(a+b\right)\left(a-b\right)=-\left(9.11\right)\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+b=33\\a-b=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=15\\b=18\end{matrix}\right.\\\Rightarrow\left\{{}\begin{matrix}x+z=15\\y=6\Rightarrow xz=6^2=36\end{matrix}\right.\\\left\{{}\begin{matrix}a+b=3\\a-b=-33\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+z=15\\3y=18\end{matrix}\right.\\\left\{{}\begin{matrix}x=12\\y=6\\z=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+z=-15\\3y=18\end{matrix}\right.\end{matrix}\right.\)
Trường hợp 3: Không thỏa mãn
Vậy \(x=12;y=6;z=3\) hoặc \(x=3;y=6;z=12\)
Ta có: \(\left(2x-y\right)^2\ge0\); \(\left(y-2\right)^2\ge0\); \(\sqrt{\left(x+y+z\right)^2}=\left|x+y+z\right|\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\x+y+z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=?\\y=?\\z=?\end{matrix}\right.\)
Bạn tự giải :D