Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(y-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy x = - 1 ; y = 2
\(\left(x-3\right);\left(y+x\right)\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(2;-9\right);\left(4;3\right);\left(-4;3\right);\left(10;-9\right)\right\}\left(x,y\in Z\right)\)
Bài 1 : Tính nhanh
a) 16.(38−2)−38(16−1)16.(38−2)−38(16−1)
b) (−41).(59+2)+59(41−2)(−41).(59+2)+59(41−2)
Bài 2 :
Tìm các số x ; y ; x biết rằng :
x + y = 2 ; y + z = 3 ; z + x = -5
Bài 3 : Tìm x ; y ∈∈ Z biết rằng :
( y + 1 ) . xy - 1 ) = 3
>> Với toán lớp 6 chắc đề bài là tìm x,y nhỉ ? . Lần sau bạn nhớ viết tên đề bài nhé ;) <<
a) \((x−3).(y−2)=7\)
\(\Rightarrow\left(x\text{−}3\right)\inƯ\left(7\right)\)
\(\Rightarrow x\text{−}3\in\left\{1;\text{−}1;7;\text{−}7\right\}\)
Ta có bảng sau :
\(x\text{−}3\) | \(1\) | \(−1\) | \(7\) | \(−7\) |
\(x\) | \(4\) | \(2 \) | \(10\) | \(\text{−}4\) |
\(y−2\) | 7 | −7 | 1 | −1 |
\(y\) | 9 | −5 | 3 | 1 |
Vậy .....
b) \((x−1).(y−1)=2\)
\(\Rightarrow\left(x\text{−}1\right)\inƯ\left(2\right)\)
\(\Rightarrow x\text{−}1\in\left\{1;\text{−}1;2;\text{−}2\right\}\)
Ta có bảng sau :
x−1 | 1 | −1 | 2 | −2 |
x | 2 | 0 | 3 | −1 |
y−1 | 2 | −2 | 1 | −1 |
y | 3 | −1 | 2 | 0 |
Vậy ......
c) \((x−1).(y−2) = 2\)
\(\Rightarrow x\text{−}1\inƯ\left(2\right)\)
\(\Rightarrow x\text{−}1\in\left\{1;\text{−}1;2;\text{−}2\right\}\)
Ta có bảng sau :
x−1 | 1 | −1 | 2 | −2 |
x | 2 | 0 | 3 | −1 |
y−2 | 2 | −2 | 1 | −1 |
y | 4 | 0 | 3 | 1 |
Vậy ...
Ta có : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
mà \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y^2-z=2^2-\left(-3\right)=7\\y=2\\z=-3\end{cases}}\)
\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
Do \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}\left[x-2^2+\left(-3\right)\right]^2=0\\y=2\\z=-3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}}\)
Vậy ...
ngu thế !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!