Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25 - y2 = 8(x - 2009)2
<=> 8(x - 2009)2 + y2 = 25
Với |x - 2009| = 0 thì => x = 2009
=> y = (-5; 5)
Với |x - 2009| = 1 thì
=> 8(x - 2009)2 = 8
=> y2 = 25 - 8 = 17 (loại)
Với |x - 2009| \(\ge\)2 thì
=> 8(x - 2009)2 \(\ge\)8.4 = 32 (loại)
Vậy x = 2009, y = (-5; 5)
ta có: 25 - y2 = 8(x - 2009)2
=> 8(x - 2009)2 \(\le25\)
=> \(\left(x-2009\right)^2\le\frac{25}{8}\)
mà (x - 2009)2 là số chính phương
=> (x - 2009)2 = { 0;1 }
- nếu (x - 2009)2 = 0 => x - 2009 = 0 => x = 2009
=> 25 - y2 = 0 => y2 = 25 => y = \(\orbr{\begin{cases}5\\-5\end{cases}}\)
- nếu (x - 2009)2 = 1 => \(\orbr{\begin{cases}x-2009=1\\x-2009=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2010\\x=2008\end{cases}}}\)
=> 25 - y2 = 8 => y2 = 17 ( loại )
vậy ta có cặp số (x;y) là (2009;5) ; (2009;-5) thỏa mãn yêu cầu đề bài
a, Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\ge\left|x-2014+2016-x\right|+0=\left|-2\right|+0=2\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2014\\x=2015\\x\le2016\end{matrix}\right.\Rightarrow x=2015\)
Vậy \(MIN_A=2\) khi x = 2015
b, Ta có: \(-y^2\le0\Rightarrow25-y^2\le25\)
\(\Rightarrow8\left(x-2015\right)^2\le25\)
\(\Rightarrow\left(x-2015\right)^2< 4\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2015\right)^2=0\\\left(x-2015\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2015\\x-2015=\pm1\end{matrix}\right.\)
+) Xét \(x=2015\Rightarrow y=\pm5\) ( t/m )
+) Xét \(x=1\Rightarrow y\notin Z\) ( loại )
+) Xét \(x=-1\Rightarrow y\notin Z\) ( loại )
Vậy x = 2015 và \(y=\pm5\)
25-y2= 8 (x-2015)2
=> 8(x-2015)2+ y2 =25 (1)
Vì y2 lớn hơn hoặc bằng 0 với mọi y
8(x-2015)2 lớn hơn hoặc bằng 0 với mọi x
=> 8(x-2015)2 lớn hơn hoặc bằng 25
=> (x-2015)2 > hoặc bằng \(\dfrac{25}{8}\)
=>( x-2015)2 = 1 thay vào (1) => y2 = 17 ( loại)
hoặc (x-2015)2 = 0 thay vào (1) => y2 = 25 => yϵ { -5; 5}
=> x= 2015
Vậy x= 2015 ; y=5
hoặc x= 2015 ; y = -5
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
Câu 2a đánh thiếu đề rồi : I x+1I + I x+2I + I x+3 I = x
2c)
Ta có: \(25-y^2\le25\Rightarrow8\left(x-2012\right)^2\le25\)
\(\Rightarrow\left(x-2012\right)^2\le3\)
\(\Rightarrow\left[\begin{matrix}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x-2012=0\\\left[\begin{matrix}x-2012=1\\x-2012=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=2012\\\left[\begin{matrix}x=2013\\x=2011\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}y=5\\\left[\begin{matrix}y=\sqrt{17}\\y=\sqrt{17}\end{matrix}\right.\end{matrix}\right.\)(loại)
Vậy x=2012,y=5
3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0
nên số mũ chắc chắn bằng 0
mà số nào mũ 0 cũng bằng 1 nên A=1
5/ vì |2/3x-1/6|> hoặc = 0
nên A nhỏ nhất khi |2/3x-6|=0
=>A=-1/3
6/ =>14x=10y=>x=10/14y
23x:2y=23x-y=256=28
=>3x-y=8
=>3.10/4y-y=8
=>6,5y=8
=>y=16/13
=>x=10/14y=10/14.16/13=80/91
8/106-57=56.26-56.5=56(26-5)=59.56
có chứa thừa số 59 nên chia hết 59
4/ tính x
sau đó thế vào tinh y,z
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\in Z\Rightarrow x+1\inƯ\left(1\right)\Rightarrow x+1\in\left\{-1;1\right\}\Rightarrow x\in\left\{-2;0\right\}\)
\(+,x=0;\Rightarrow\frac{x}{x+1}=0\left(tm\right);+,x=-2\Rightarrow\frac{x}{x+1}=\frac{-2}{-1}=2\left(tm\right)\)
Vậy: x E {0;2}
b, \(\frac{a}{2010}=\frac{b}{2012}=\frac{c}{2014}\Rightarrow a=2010k;b=2012k;c=2014k\left(k\in Z\right)\)
\(\frac{\left(a-c\right)^2}{4}=\frac{\left(-4k\right)^2}{4}=\frac{16k^2}{4}=4k^2\)và: \(\left(a-b\right)\left(b-c\right)=\left(-2k\right)\left(-2k\right)=4k^2\)
\(\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)\(\left(ĐPCM\right)\)
c, Ta có:
\(25-y^2=8.x^2\Rightarrow25-y^2⋮8\Rightarrow y^2:8\left(dư1\right)\left(y\le5\right)\Rightarrow y\in\left\{1;3;5\right\}\)
Ta lần lượt thử ta thấy:
\(25-y^2=8.x^2\left(tm\right)\Leftrightarrow y=5\Rightarrow x=0\)
Vậy: y=5;x=0
vì 8(x-2009)^2>=0 suy ra 25-y^2>=0. Mà y^2>=0 suy ra 25-y^2<=25. Suy ra 0<=25-y^2<=25. suy ra 0<=8(x-2009)^2<=25
suy ra 0<=(x-2009)^2<=25/8 (cùng chia cho 8 cả 3 vế)
nên (x-2009)^2=0 ;1
- Nếu (x-2009)^2=0 suy ra x-2009=0 suy ra x=2009
nên 25-y^2=0 suy ra y^2=25 suy ra y=5(t/m)
- Nếu (x=2009)^2=1 suy ra x-2009=1 hoặc x-2009=-1
suy ra: x=2010 hoặc x=2008
nên 25-y^2=8 nhân 1 suy ra y^2=17(loại vì y thuộc N)
Vậy ta tim đc 1 cặp (x;y) là (2009;5)
Nhớ tích đúng cho mình nhé.....! Cảm ơn
Ta có:8(x-2009)^2 chia hết cho 2 suy ra 8(x-2009)^2 là số chẵn mà 25-y^ 2=8(x-2009)^2 suy ra 25-y^2 là số chẵn mà 25 là số lẻ nên y^2 là số lẻ
Mặt khác:8(x-2009)^2>0 nên 25-y^2>0 suy ra y^2 phải bé hơn hoặc bằng. 25 nên y^2 thuộc :1;4;9;16;25 mà theo cm trên thì y^2 lẻ suy ra y^2 thuộc:1;9;25
thay từng trường hợp y rồi tìm x
\(25-y^2=8\left(x-2015\right)^2\)
Ta có: \(25-y^2\le25\Rightarrow8\left(x-2015\right)^2\le25\)
Mà: \(8\left(x-2015\right)^2\ge0;8\left(x-2015\right)^2⋮8\)
\(\Rightarrow\left\{{}\begin{matrix}8\left(x-2015\right)^2\in N\\8\left(x-2015\right)^2⋮8\\0\le8\left(x-2015\right)^2\le25\end{matrix}\right.\)
\(\Rightarrow8\left(x-2015\right)^2\in\left\{0;8;16;24\right\}\Rightarrow\left(x-2015\right)^2\in\left\{0;1;2;3\right\}\)
Giải tiếp nhé
\(25-y^2=8\left(x-2015\right)^2\)
\(pt\Leftrightarrow8\left(x-2015\right)^2+y^2=25\left(1\right)\)
Vì \(y^2\ge0\Rightarrow8\left(x-2015\right)^2\le25\)
\(\Rightarrow\left(x-2015\right)^2\le\dfrac{25}{8}\). Nên ta có:
*)Với \(\left(x-2015\right)^2=1\) thay vào \((1)\) ta có \(y^2=17\) (loại)
*)Với \(\left(x-2015\right)^2=0\) thay vào \((1)\) ta có \(y^2=25\Rightarrow y=\pm5\)
Vậy \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2015\\y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=2015\\y=-5\end{matrix}\right.\end{matrix}\right.\) thỏa mãn