Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(2x+11⋮x+3\)
\(\Leftrightarrow2x+6+5⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
d: \(3x+10⋮x-1\)
\(\Leftrightarrow3x-3+13⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{2;0;14;-12\right\}\)
a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |
1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)
=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)
=> \(15-x+x-12-5+x=7\)
=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)
=> \(\left(15-12-5\right)-7=3x\)
=> \(3x=-2-7\)
=> \(3x=-9\)
=> \(x=\frac{-9}{3}=-3\)
b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)
=> \(x-57-42-23-x=13-47+25-32+x\)
=> \(x-x+x=13-47+25-32+57+42+23\)
=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)
=> \(x=36-104+82-74\)
=> \(x=-60\)
d/ \(\left(x-3\right)\left(2y+1\right)=7\)
Vì 7 là số nguyên tố nên ta có 2 trường hợp:
TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).
TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).
Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).
Bài 1:
a: =>13x+8=9x+20
=>4x=12
hay x=3
b: \(\Leftrightarrow5x-7=-8-11-3x\)
=>5x-7=-3x-19
=>8x=-12
hay x=-3/2
c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)
e: =>3x+1=-5
=>3x=-6
hay x=-2
\(\frac{x+5}{3}=\frac{y-7}{4}\)
áp dụng t\c của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{3}=\frac{y-7}{4}=\frac{x+5+y-7}{3+4}=\frac{23-2}{7}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot3-5=4\\y=3\cdot4+7=19\end{cases}}\)
đặt \(k=\frac{x+5}{3}=\frac{y-7}{4}\)
\(\Rightarrow\hept{\begin{cases}x=3k-5\\y=4k+7\end{cases}}\)
\(\Rightarrow x+y=3k-5+4k+7=7k+2=23\)
\(\Rightarrow k=\frac{23-2}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=19\end{cases}}\)
các câu tiếp theo tương tự