Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Với $x,y,z$ nguyên dương ta thấy:
\((x+y)^2+3x+y+1> (x+y)^2(1)\)
Và:
\((x+y)^2+3x+y+1< (x+y)^2+4(x+y)+4\)
hay $(x+y)^2+3x+y+1< (x+y+2)^2(2)$
Từ \((1);(2)\Rightarrow (x+y)^2< (x+y)^2+3x+y+1< (x+y+2)^2\)
\(\Leftrightarrow (x+y)^2< z^2< (x+y+2)^2\)
Theo nguyên lý kẹp suy ra $z^2=(x+y+1)^2$
$\Leftrightarrow (x+y)^2+3x+y+1=(x+y+1)^2$
$\Leftrightarrow x=y$
Thay vào PT ban đầu:
\((2x)^2+3x+x+1=z^2\Leftrightarrow (2x+1)^2=z^2\Rightarrow 2x+1=z\) (không có TH $2x+1=-z$ do $x,z$ cùng nguyên dương)
Vậy PT có nghiệm $(x,y,z)=(m,m,2m+1)$ với $m$ là số nguyên dương bất kỳ.
Lời giải:
Xét
PT \(\Leftrightarrow x^3=y^3+2y^2+3y+1\)
Ta thấy:
\(y^3+2y^2+3y+1=(y^3+3y^2+3y+1)-y^2=(y+1)^3-y^2\leq (y+1)^3(1)\)
\(y^3+2y^2+3y+1=(y^3-3y^2+3y-1)+5y^2+2=(y-1)^3+5y^2+2\)
\(>(y-1)^3(2)\)
Từ \((1);(2)\Rightarrow (y+1)^3\geq y^3+2y^2+3y+1> (y-1)^3\)
\(\Leftrightarrow (y+1)^3\geq x^3> (y-1)^3\)
Theo nguyên lý kẹp thì \(\left[\begin{matrix} x^3=(y+1)^3\\ x^3=y^3\end{matrix}\right.\)
Nếu \(x^3=(y+1)^3\Leftrightarrow y^3+2y^2+3y+1=(y+1)^3\)
\(\Leftrightarrow y=0\)
\(\Rightarrow x^3=1\Rightarrow x=1\)
Nếu \(x^3=y^3\Leftrightarrow y^3+2y^2+3y+1=y^3\)
\(\Leftrightarrow 2y^2+3y+1=0\Leftrightarrow (2y+1)(y+1)=0\Rightarrow y=-1\) (do $y$ nguyên)
$\Rightarrow x^3=y^3=-1\Rightarrow x=-1$
Vậy $(x,y)=(1,0); (-1,-1)$
2) ĐK: x;y ∈ Z
pt ⇔ \(\left(x-y\right)^2+\left(y-1\right)\left(y-3\right)=0\)
=> I) a) x-y=0 => x=y
b) y-1=0 => y=1 => x=y=1(nhận)
II) a) x-y=0 => x=y
b) y-3=0 => y=3 => x=y=3(nhận)
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây
a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)
Tương tự hai BĐT còn lại và cộng theo vế suy ra:
\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)
Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó
Is it true?
\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)
\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)
\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)
\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)
\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Dấu "=" xảy ra khi \(x=y=1\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)
\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)
\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)
Cộng theo vế:
\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)
\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
\(x^3y^3-3xy^3+y^2+x^2-2y-3=0\)
\(\Leftrightarrow xy^3\left(x^2-4\right)+\left(y-1\right)^2+\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(xy^3+1\right)=-\left(y-1\right)^2\)
Ta có \(RHS\le0\Rightarrow LHS\le0\) mà \(xy^3+1>0\Rightarrow x^2-4< 0\Rightarrow x^2< 4\Rightarrow x\in\left\{0;1;2\right\}\)
Thay x vào tìm y nốt nha anh :))