Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 3( 2x - y ) = 2 ( x + 2y )
<=> 6x - 3y = 2x + 4y
<=> 6x - 2x = 4y + 3y
<=> 4x = 7y
=> \(\frac{x}{y}=\frac{7}{4}\)
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
Ta có: \(\hept{\begin{cases}\frac{x}{y}=-30\\\frac{y}{z}=42\\z-x=-12\end{cases}}\).
Suy ra \(\frac{x}{y}.\frac{y}{z}=-30.42\Leftrightarrow\frac{x}{z}=-1260\) suy ra \(x=-1260.z\).
Suy ra \(z-x=z-\left(-1260z\right)=z\left(1+1260\right)=12\).
Suy ra \(z=\frac{12}{1261}\).
Vậy \(y=42.z=42.\frac{12}{1261}=\frac{504}{1256}\).
\(x=30.y=30.\frac{12}{1261}=\frac{360}{1261}\).
+) Ta có: yz-xy=42+30
=>y(z-x)=72
=>-12y =72
=>y =-6
+) Mà x.y=-30
=>x.(-6)=-30
=>x =5
y.z=42
=>-6.z=42
=>z =-7
Vậy (x;y;z)=(5;-6;-7)
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
ADTCDTSBN
có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{15}=\frac{x+y+z}{2+5+15}=\frac{230}{22}=\frac{115}{11}.\)
=> x/2 = 115/11 => x = 230/11
...
bn tự lm típ nha!!!
Cách 2:
ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\\z=15k\end{cases}}\)
mà x + y + z = 230
=> 2k + 5k + 15k = 230
k.(2+5+15) = 230
k.22 = 230
k = 115/11
=> x = 2k = 2. 115/11 = 230/11
...
Vì \(x\div6=y\div42\Rightarrow\frac{x}{6}=\frac{y}{42}\)
Và \(\frac{x+y}{2}=12\Rightarrow x+y=24\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{6}=\frac{y}{42}=\frac{x+y}{6+42}=\frac{24}{48}=\frac{1}{2}\)
Vì \(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1}{2}.6=3\)
\(\frac{y}{42}=\frac{1}{2}\Rightarrow y=\frac{1}{2}.42=21\)
Vay \(x=3;y=21\)
nhờ tích mk nha
(x+y) : 2 = 12 suy ra x + y = 12 * 2 =24
\(x:6=y:42 suy ra \)\(\frac{x}{6}=\frac{y}{42}\)và x + y bằng 24
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{6}=\frac{y}{42}=\frac{x+y}{6+42}=\frac{24}{48}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=3\)
\(\frac{y}{42}=\frac{1}{2}\Rightarrow y=21\)