K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

Để giải phương trình này, chúng ta có thể sử dụng công thức khai triển đa thức. Với phương trình A) x^3 + y^3 = 6xy - 8, ta có thể thay thế x^3 và y^3 bằng (x + y)(x^2 - xy + y^2) và tiếp tục giải từ đó. Tương tự, chúng ta có thể áp dụng công thức khai triển đa thức cho các phương trình B) và C) để tìm giá trị của x và y.

20 tháng 10 2023

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

17 tháng 10 2021

làm ơn giúp e vs

17 tháng 10 2021

\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)

30 tháng 10 2023

a) 3x³ + 6x²y

= 3x².(x + 2y)

b) 2x³ - 6x²

= 2x².(x - 2)

c) 18x² - 20xy

= 2x.(9x - 10y)

d) xy + y² - x - y

= (xy + y²) - (x + y)

= y(x + y) - (x + y)

= (x + y)(y - 1)

e) (x²y² - 8)² - 1

= (x²y² - 8 - 1)(x²y² - 8 + 1)

= (x²y² - 9)(x²y² - 7)

= (xy - 3)(xy + 3)(x²y² - 7)

f) x² - 7x - 8

= x² - 8x + x - 8

= (x² - 8x) + (x - 8)

= x(x - 8) + (x - 8)

= (x - 8)(x + 1)

30 tháng 10 2023

a: \(3x^3+6x^2y\)

\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)

b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)

c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)

d: \(xy+y^2-x-y\)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(y-1\right)\)

e: \(\left(x^2y^2-8\right)^2-1\)

\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)

\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)

\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)

f: \(x^2-7x-8\)

\(=x^2-8x+x-8\)

\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)

g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)

\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)

\(=2x\left(2x-y\right)\left(5x-3y\right)\)

h: \(x^2-2x+1-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)

\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)

k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)

\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)

l: \(-2x^2+8xy-8y^2\)

\(=-2\left(x^2-4xy+4y^2\right)\)

\(=-2\left(x-2y\right)^2\)

m: \(3x^2+5x-3y^2-5y\)

\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+3y+5\right)\)

10 tháng 8 2016

Bài 1:

\(A=x^2y-y+xy^2-x=\left(x^2y+xy^2\right)-\left(x+y\right)\\ =xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

Voqis x=-1;y=3 ta có:

\(A=\left(-1+3\right)\left(-1\cdot3-1\right)=2\cdot\left(-4\right)=-8\)

b) \(B=x^2y^2+xy+x^3+y^3=\left(x^2y^2+x^3\right)+\left(xy+y^3\right)\\ =x^2\left(y^2+x\right)+y\left(x+y^2\right)=\left(x+y^2\right)\left(x^2+y\right)\)

Với x=-1;y=3 ta có:

\(B=\left(-1+3^2\right)\left(-1^2+3\right)=8\cdot2=16\)

c) \(C=2x+xy^2-x^2y-2y=\left(2x-2y\right)+\left(xy^2-x^2y\right)\\ =2\left(x-y\right)+xy\left(y-x\right)=\left(x-y\right)\left(2-xy\right)\)

Với x=-1;y=3 ta có:

\(C=\left(-1-3\right)\left(2-\left(-1\right)\cdot3\right)=-4\cdot5=-20\)

d) phân tích tt

3 tháng 6 2017

a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)

3 tháng 6 2017

PTNN là gì bạn ?

a) Ta có: \(A=a\left(b+3\right)-b\left(3+b\right)\)

\(=a\left(b+3\right)-b\left(b+3\right)\)

\(=\left(b+3\right)\left(a-b\right)\)

Thay a=2003 và b=1997 vào biểu thức A=(b+3)(a-b), ta được:

\(A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\)

Vậy: 12000 là giá trị của biểu thức \(A=a\left(b+3\right)-b\left(3+b\right)\) tại a=2003 và b=1997

b) Ta có: \(B=b^2-8b-c\left(8-b\right)\)

\(=b\left(b-8\right)+c\left(b-8\right)\)

\(=\left(b-8\right)\left(b+c\right)\)

Thay b=108 và c=-8 vào biểu thức B=(b-8)(b+c), ta được:

\(B=\left(108-8\right)\cdot\left(108-8\right)\)

\(=100\cdot100=10000\)

Vậy: 10000 là giá trị của biểu thức \(B=b^2-8b-c\left(8-b\right)\) tại b=108 và c=-8

c) Ta có: \(C=xy\left(x+y\right)-2x-2y\)

\(=xy\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-2\right)\)

Thay xy=8 và x+y=7 vào biểu thức \(C=\left(x+y\right)\left(xy-2\right)\), ta được:

\(C=7\cdot\left(8-2\right)=7\cdot6=42\)

Vậy: 42 là giá trị của biểu thức \(C=xy\left(x+y\right)-2x-2y\) tại xy=8 và x+y=7

d) Ta có: \(D=x^5\left(x+2y\right)-x^3y\left(x+2y\right)+x^2y^2\left(x+2y\right)\)

\(=x^2\left(x+2y\right)\left(x^3-xy+y^2\right)\)

Thay x=10 và y=-5 vào biểu thức \(D=x^2\left(x+2y\right)\left(x^3-xy+y^2\right)\), ta được:

\(D=10^2\left[10+2\cdot\left(-5\right)\right]\left[10^3-10\cdot\left(-5\right)+\left(-5\right)^2\right]\)

\(=10^2\cdot\left(10-10\right)\cdot\left(100+50+25\right)\)

=0

Vậy: 0 là giá trị của biểu thức \(D=x^5\left(x+2y\right)-x^3y\left(x+2y\right)+x^2y^2\left(x+2y\right)\) tại x=10 và y=-5

27 tháng 7 2020

a) \(A=a\left(b+3\right)-b\left(3+b\right)\)

\(=\left(b+3\right)\left(a-b\right)\)

Thay a = 2003 và b = 1997 vào A ta có:

\(A=\left(1997+3\right)\left(2003-1997\right)\)

\(=2000.6=12000\)

b) \(B=b^2-8b-c\left(8-b\right)\)

\(=b\left(b-8\right)+c\left(-8+b\right)\)

\(=b\left(b-8\right)+c\left(b-8\right)\)

\(=\left(b-8\right)\left(b+c\right)\)

Thay b = 108 và c = -8 vào B ta có:

\(\left(108-8\right)\left(108-8\right)\)

\(=100.100=10000\)

c) \(C=xy\left(x+y\right)-2x-2y\)

\(=xy\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-2\right)\)

Thay xy = 8 và x + y = 7 vào C ta có:

\(7.\left(8-2\right)=7.6=42\)

d/Bạn dùng công thức trực quan để ghi công thức nhé!

26 tháng 5 2018

Khai triển rồi thu gọn

19 tháng 9 2019

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

Bài 2: 

a: \(x^2\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

b: \(x^8+36x^4=0\)

\(\Leftrightarrow x^4=0\)

hay x=0

2 tháng 10 2021

a(b+3)-b(3+b)

=(3+b)(a-b)

Thay số, có: (3+1997).(2003-1997)

= 2000.6 =12000

xy(x+y)-2x-2y

xy(x+y)- 2(x+y)

(x+y).(xy-2)

Thay số, co: 7. (8-2)

7.4=28