Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\left(2x-1\right)^{2016}\ge0;\left(y-\frac{2}{5}\right)^{2016}\ge0;\left|x+y+z\right|\ge0\forall x;y;z\)
Mà theo đề bài: \(\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x-1\right)^{2016}=0\\\left(y-\frac{2}{5}\right)^{2016}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{-9}{10}\end{cases}\)
Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{-9}{10}\)
(2x-1)^2014=(2x-1)^2016
(2x-1)^2016-(2x-1)^2014=0
(2x-1)^2014[(2x-1)^2-1)]=0
=> (2x-1)^2014=0, (2x-1)^2-1=0
2x-1=0, (2x-1)^2=1
2x=1, 2x-1=1, 2x-1=-1
x=1/2, 2x=2, 2x=0
x=1/2, x=1, x=0.
b/ 2^x+1.3^y=12^x
2^x+3^y=12^x
2^x=12^x-3^y. Vậy 2^0=12^0-3^y. (Vì nếu x,y>1 thì 12^x-3^y lẻ mà 2^x chẵn nên vô lí) => 1=1-3^y => 0=3^y (Vô lí vì 3^y>=1). Vậy ko có x,y thỏa mãn.
c/ 10^x:5^y=20^y
10^x=100^y
10^x=10^2y
=> x=2y. => xEN, y=2x
[2x-5]^2016+[3y+4]^2014<hoặc=0
=>2x-5=0 và 3y+4=0 (vì [2x-5]^2016+[3y+4]^2014>hoặc=0 với mọi x;y)
=>x=5/2 và y=-4/3
vậy x=5/2 và y=-4/3
Đề bài ? Tìm x,y à
Ta có : \(\left(2x-1\right)^{2014}\) \( \geq\) \(0\) với mọi x
\(\left(x-y-\frac{1}{2}\right)^{2016}\) \( \geq\) \(0\) với mọi x ; y
\(\implies\)\(\left(2x-1\right)^{2014}+\left(x-y-\frac{1}{2}\right)^{2016}\) \( \geq\) \(0\) với mọi x ; y
Mà \(\left(2x-1\right)^{2014}+\left(x-y-\frac{1}{2}\right)^{2016}=0\)
\(\implies\) Dấu bằng xảy ra \(\iff\) \(\hept{\begin{cases}\left(2x-1\right)^{2014}=0\\\left(x-y-\frac{1}{2}\right)^{2016}=0\end{cases}}\) \(\iff\) \(\hept{\begin{cases}2x-1=0\\x-y-\frac{1}{2}=0\end{cases}}\) \(\iff\) \(\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)