\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tính chất dãy tỉ số bằng nhau phải ko? Từ từ mk làm cho

11 tháng 2 2016

Nhanh lên nhé các bạn, mình đang rất gấp

20 tháng 8 2016

a)  \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)

\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)

Thay vào lần lượt ta có:

\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)

\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)

\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)

11 tháng 10 2019

Ta có

\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)

Ap dụng  tính chất DTSBN

\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)

\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)

Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với

11 tháng 10 2019

Bạn còn thiếu 1 câu b mà

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

b) \(\frac{x-1}{2}=\frac{2x-2}{4}\)

\(\frac{y-2}{3}=\frac{3y-6}{9}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z+3-2-6}{9}=\frac{50+3-2-6}{9}=\frac{45}{9}=5\)=>x-1=5.2=10

=>x=11

y-2=5.3=15

=>y=17

z-3=5.4=20

=>z=23

Vậy (x;y;z)=(11;17;23)

10 tháng 11 2019

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+x-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x+y+z khác 0).Do đó x+y+z = 0.5

Thay kq này vào bài ta được:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)

Tức là : \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)

Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4 2024

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

28 tháng 6 2019

a)Theo đề bài và t/c dãy tỉ số bằng nhau suy ra:

\(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)(1)

Mặt khác \(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\) .

Do đó \(x+y+z=\frac{1}{2}\Rightarrow x+y=\frac{1}{2}-z;...\text{tương tự mấy cái kia}\)

Suy ra \(\frac{x}{z+y+1}=\frac{1}{2}\Leftrightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\Leftrightarrow\frac{2x}{3-2x}=\frac{1}{2}\)

\(\Leftrightarrow4x=3-2x\Leftrightarrow x=\frac{1}{2}\) .Tương tự với hai phân thức kia ta được: \(x=y=z=\frac{1}{2}\)

31 tháng 7 2020

ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

31 tháng 7 2020

a,Sử dụng tính chất của dãy tỉ số bằng nhau

 \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)

\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)