Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x+0,25=\dfrac{5}{4}\\ x+\dfrac{1}{4}=\dfrac{5}{4}\\ x=\dfrac{5}{4}-\dfrac{1}{4}\\ x=1\\ b,\left(3-2x\right)-3=3\\ 3-2x=3+3\\ 3-2x=6\\ 2x=3-6\\ 2x=-3\\ x=-\dfrac{3}{2}\\ c,\left(x-1\right)^5=-32\\ \left(x-1\right)^5=\left(-2\right)^5\\ \Rightarrow x-1=-2\\ x=-2+1\\ x=-1\\ d,0,2:\dfrac{6}{5}=\dfrac{2}{3}:\left(6x+7\right)\\ \dfrac{1}{5}:\dfrac{6}{5}=\dfrac{1}{9}x+\dfrac{2}{21}\\ \dfrac{1}{9}x+\dfrac{2}{21}=\dfrac{1}{6}\\ \dfrac{1}{9}x=\dfrac{1}{6}-\dfrac{2}{21}\\ \dfrac{1}{9}x=\dfrac{1}{14}\\ x=\dfrac{1}{14}:\dfrac{1}{9}\\ x=\dfrac{9}{14}\)
Các câu sau làm tương tự nhé! ( mỏi tay lắm)
e, Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x-y}{3-4}=\dfrac{12}{-1}=-12\\ \Rightarrow\left\{{}\begin{matrix}x=-12\cdot3=-36\\y=-12\cdot4=-48\end{matrix}\right.\)
g, Ta có : \(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{2\cdot38}{2}=38\\y=2\cdot21=42\end{matrix}\right.\)
H, Thiếu đề.
Tiện tay làm luôn
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
Ta co:
\(\frac{x}{y}=\frac{17}{3}\Rightarrow\frac{x}{3}=\frac{y}{17}=\frac{x+y}{3+17}=3\)
\(\frac{x}{3}=3\Rightarrow x=9\)
\(\frac{y}{17}=3\Rightarrow y=51\)
b)Ta co:
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=2\)
\(\frac{2x}{38}=2\Rightarrow x=38\)
\(\frac{y}{21}=2\Rightarrow y=42\)
Ta co:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=4\)
\(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=8\)
g)\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=2\)
\(\frac{x}{10}=2\Rightarrow x=20;\frac{y}{15}=2\Rightarrow y=30;\frac{z}{21}=2\Rightarrow z=42\)
a) \(\left(x-5\right)^2\cdot\left|y^2-81\right|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\y^2-81=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\y=+-9\end{cases}}}\)
b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(5y=2z\Leftrightarrow\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{3x+y-z}{9+2-5}=\frac{-360}{6}=-60\)
Tự tìm x,y,z nhé
c) \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\)
(làm tương tự câu b)
d) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Leftrightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\left(..........\right)\)
đến đây chắc dễ rồi
e) \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow x=\frac{5y}{4}\)
Thay \(x=\frac{5y}{4}\)vào biểu thức x^2 - y^2 =1
(tìm ra y sau đó thay y vào \(x=\frac{5y}{4}\)để tìm x)
f)
a)ta có: x/10 = y/6 = z/21=>5x/50=y/6=2z/42
áp dụng tính chất của dãy tỉ số = nhau ta có:
5x/50=y/6=2z/42=5x+y-2z/50+6-42=28/14=2
suy ra: 5x/50=2=>5x=100=>x=20
y/6=2=>y=12
2z/42=2=>84=>z=42
b)3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số = nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra :
x/10=2=>x=20
y/15=2=>y=30
z/21=2=>z=42
c) x/3 = y/4 ; y/3 = z/5
=>x/9=y/12;y/12=z/20
=>x/9=y/12=z/20
=>2x/18=3y/36=z/20
áp dụng tính chất của dãy tỉ số = nhau ta có:
2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3
suy ra
2x/18=3=>2x=54=>x=27
3y/36=3=>3y=108=>y=36
z/20=3=>z=60
d)2x/3 = 3y/4 = 4z/5
=>12x/18=12y/16=12z/15
áp dụng tính chất của dãy tỉ số = nhau ta có:
12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12
suy ra
12x/18=12=>12x=216=>x=18
12y/16=12=>12y=192=>y=16
12z/15=12=>12z=180=>z=15
d)đặt x-1/2=y-2/3=z-3/4=k
=>x=2k+1
y=3k+2
z=4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:
2(2k+1)+3(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2k+1=2.5+1=11
y=3k+2=3.5+2=17
z=4k+3=4.5+3=23
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42