K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

x2+y2-2x+4y+5=0

<=>x2-2x+1+y2+4y+4=0

<=>(x-1)2+(y+4)2=0

<=>x-1=0 và y+4=0

<=>x=1 và y=-4

3 tháng 8 2015

i love U không giải đâu ,đừng có ****,bạn ấy luôn đi xin **** người khác mà không thèm giải bài nào

30 tháng 7 2016

Ta có B=\(2\left(x+y\right)\left(x^2-xy+y^2\right)+3x^2+3y^2+10xy\)

\(B=-8x^2+8xy-8y^2+3x^2+3y^2+10xy\)

\(-B=5x^2-18xy+5y^2>=\frac{5}{2}\left(x+y\right)^2-18\left(\frac{x+y}{2}\right)^2=40-72\)=-32

hay b>=32 dấu bằng xảy ra tự tính

24 tháng 6 2017

\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)

24 tháng 6 2017

b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-3x-3x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)

\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)

Hay \(P\ge10\) với mọi giá trị của \(x\in R\).

Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)

\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy.....

Chúc bạn học tốt!!!

18 tháng 1 2018

Chị cũng là fan của BTS à

18 tháng 1 2018

Chị hâm mộ V đúng không

1 tháng 10 2016

xem lạiđề,có 2 lần x2 xuất hiện

31 tháng 7 2016

x2.(x+3)+y2.(y+5)(x+y).(x2xy+y2)=0

<=>\(x^3+3x^2+y^3+5y^2-x^3-y^3=0\)(áp dụng hằng đẳng thức)

<=> \(3x^2+5y^2=0\)

ta thấy \(3x^2\ge0\)với mọi x

             \(5y^2\ge0\) với mọi y

=> \(3x^2+5y^2\ge0\)

=> x=0 và y=0

vậy cặp số (x;y)=(0;0)