K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

Bài tập Toán tick nhé bn và moi ng

28 tháng 12 2015

câu hỏi tương tự nha bạn

5 tháng 10 2015

a) VÌ 2x2 + y2 - 2y - 6x + 2xy + 5 = 0 nên

2(2x2 + y2 - 2y - 6x + 2xy + 5) = 0

4x^2+2y^2-4y-12x+4xy+10=0

(4x^2+4xy+y^2)-6(2x+y)+9+(y^2-2y+1)=0

(2x+y)^2-6(2x+y)+9+(y-1)^2=0

(2x+y-3)^2+(y-1)^2=0(*)

vì (2x+y-3)^2>=0 và(Y-1)^2>=0nên (*) xảy ra khi

(2x+y-3)^2=0<=>2x-2=0<=>x=1

(Y-1)^2=0<=>y=1

 

 

28 tháng 12 2016

x=1 y=1

21 tháng 10 2018

a. Biểu thức ko thể biểu diễn dưới dạng tích của các thừa số

b. (x-1)(4x+1)

c. -(3z^2-5y^2-6xy-3x^2)

d. x(y^2-2xy+x-9)

e. -(y-x)(y-x+2)

f. y^3+xy^2+3x^2y-y+x^2-x

HỌC TỐT.

22 tháng 10 2018

\(4x^2-3x-1\)

\(=4x^2-4x+x-1\)

\(=4x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(4x+1\right)\)

10 tháng 5 2019

Tìm min chứ nhỉ?

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}=8\)

\("="\Leftrightarrow x=y=\frac{1}{2}\)

28 tháng 9 2020

Câu 1

5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

Câu 2

a) A = 2011.2013 = ( 2012 - 1 )( 2012 + 1 ) = 20122 - 1 < 20122

=> A < B

B = 3128 - 1 

= ( 364 - 1 )( 364 + 1 )

= ( 332 - 1 )( 332 + 1 )( 364 + 1 )

= ( 316 - 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= ( 34 - 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= 8( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 ) > 4( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

=> B > A

28 tháng 9 2020

a,\(5x^2+10y^2-6xy-4x-2y+3\)

\(=x^2+4x^2+y^2+9y^2-6xy-4x-2y+1+1+1\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x+3y\right)^2+\left(2x+1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)

\(\Rightarrowđpcm\)

3 tháng 8 2019

e lớp 6 a ơi

sory

3 tháng 8 2019

a) \(4x^2-y^2+4x+1\)

\(=\left(4x^2+4x+1\right)-y^2\)

\(=\left(2x+1\right)^2-y\)

\(=\left(2x+y+1\right)\left(2x-y-1\right)\)

28 tháng 7 2019

\(a,35x^2y-14xy+21xy^2=7xy\left(5x+3y-2\right)\)

\(b,x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)

\(c,x^2-7x+xy-7y=x\left(x-7\right)+y\left(x-7\right)=\left(x-7\right)\left(x+y\right)\)

\(d,x^2-y^2-10x+25=\left(x-5\right)^2-y^2=\left(x-y-5\right)\left(x+y-5\right)\)

\(e,x^3y+2x^2y^2-xyz^2+xy^3=xy\left(x^2+2xy+y^2-z^2\right)\)

\(=xy\left[\left(x+y\right)^2-z^2\right]=xy\left(x+y-z\right)\left(x+y+z\right)\)