Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a, => x + 1 = 0 => x = -1
y - 1 = 0 => y = 1
z - 2 = 0 => z = 2
=> x,y,z thuộc { -1; 1; 2 }
Lời giải:
$5xy-2y^2-2x^2=-2$
$\Rightarrow 2x^2+2y^2-5xy=2$
$\Rightarrow (2x-y)(x-2y)=2$
Với $x,y$ là số nguyên thì $2x-y, x-2y\in\mathbb{Z}$. Mà tích của hai số là 2 nên ta xét các TH sau:
TH1: $2x-y=1, x-2y=2\Rightarrow x=0; y=-1$
TH2: $2x-y=-1, x-2y=-2\Rightarrow x=0; y=1$
TH3: $2x-y=2, x-2y=1\Rightarrow x=1; y=0$
TH4: $2x-y=-2, x-2y=-1\Rightarrow x=-1; y=0$
y=0
tích nha
\(\hept{\begin{cases}x^2\ge0\\2y^2\ge0\end{cases}\Rightarrow}VT\ge0\)
Dấu "=" khi x = y = 0
Vậy x = y = 0