Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do biểu thức thuộc Z => biểu thức có giá trị là số nguyên
=> n + 3 chia hết cho n - 2
<=> 5 chia hết cho n - 2
<=> n - 2 = { -5 ; -1 ; 1 ; 5 }
<=> n - 2 = { -3 ; 1 ; 3 ; 7 }
Bài làm của bạn đó
\(\left(x+y\right)\left(x-y\right)=7\)
Vì \(x+y+x-y=2x\) chẵn
⇒ \(\left[{}\begin{matrix}x+y\text{⋮}2\\x-y\text{⋮}2\end{matrix}\right.\)
⇒ \(\left(x+y\right)\left(x-y\right)\text{⋮}4\)
mà 7 không chia hết cho 4
⇒ Không tồn tại x,y
a) Vì 7 = 1.7 mà x+y > x-y
=> x+y = 7 và x-y = 1
Bạn đưa về bài toán tổng hiệu nhé!
b) x2 + y + x + xy = 11
x2 + xy + y + x = 11
x(x+y) + (y + x) = 11
(x + y) . ( x+1) = 11
Vì 11 = 1.11
=> x+y = 1 và x+1=11 hoặc x+y=11 và x+1=1
+) Với x+1 = 11 => x=10
Mà x+y = 1 => x+y=1 và x+1=11 ( vô lí)
+) Với x+1 = 1 => x=0
Mà x+y=11 => y= 11-0=11 ( thỏa mãn)
Vậy x=0 và y=11
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{x}< \frac{1}{2}\)
=> x > 2 (1)
Giả sử x < y \(\Rightarrow\frac{1}{x}>\frac{1}{y}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x}>\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{2}{x}>\frac{1}{2}=\frac{2}{4}\)
=> x < 4 (2)
Từ (1) và (2) => x = 3
=> \(\frac{1}{y}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
=> y = 6
Vậy \(\left[\begin{array}{nghiempt}x=3;y=6\\x=6;y=3\end{array}\right.\)
a) /2x - \(\frac{1}{3}\) / =5
\(=>\left[\begin{array}{nghiempt}2x-\frac{1}{3}=5\\2x-\frac{1}{3}=-5\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}x=\frac{8}{3}\\x=-\frac{7}{3}\end{array}\right.\)
b)x3 - 4x = 0
<=> x(x2 - 4) = 0
\(=>\left[\begin{array}{nghiempt}x=0\\x^2-4=0\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}x=0\\x=\pm2\end{array}\right.\)
(x+1) (y - 3) =11
=> (x+1) và (y - 3) là ước của 11
Ta xét các trường hợp sau:
=> Theo bảng ta thấy 0, 10 -2 -12,14,4,-8,2 ϵ Z ( thỏa mãn đề bài)
Vậy có 4 đáp số:( x=0; y=10) (x=10; y=4) (x=-2; y=-8) (x=-12;y=2)
Tìm x,y thuộc Z thỏa
(x+1) (y - 3) =11
Các bạn giúp mik kiểm tra đi thiếu tự tin quá đi