Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x² + 5y² + 2y - 4xy - 3 = 0
<=> x² - 4xy + 4y² + y² + 2y + 1 - 4 = 0
<=> (x - 2y)² + (y + 1)² = 4 (*)
VÌ (x -2y)², (y+1)² là các số chính phương nên (*) chỉ có các khã năng:
* KN1:
{(x-2y)² = 0
{(y+1)² = 4
<=> x = 2y và y+1 = ±2 => x = 2y và y = -3 (do ta chọn y nhỏ nhất nên loại y = 1)
=> x = -6 và y = -3
* KN2:
{(x-2y)² = 4
{y+1)² = 0
<=> x - 2y = ±2 và y = -1 > -3 tức là ta chọn nghiêm y = -3 mới nhỏ nhất
Vậy cặp (x, y) cần tìm là: x = -6; y = -3
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Sửa đề: Tìm cặp \(x,y\in Z\) thỏa mãn \(x^2+3xy+2y^2+3x+6y-4=0\).
\(x^2+3xy+2y^2+3x+6y-4=0\)
\(\Leftrightarrow x^2+2xy+xy+2y^2+3x+6y=4\)
\(\Leftrightarrow\left(x^2+2xy\right)+\left(xy+2y^2\right)+\left(3x+6y\right)=4\)
\(\Leftrightarrow x\left(x+2y\right)+y\left(x+2y\right)+3\left(x+2y\right)=4\)
\(\Leftrightarrow\left(x+2y\right)\left(x+y+3\right)=4\)
Vì \(x,y\in Z\Rightarrow\left(x+2y\right)\left(x+y+3\right)\in Z\)
Trường hợp 1: \(\left\{{}\begin{matrix}x+2y=1\\x+y+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\) (thỏa mãn)
Trường hợp 2: \(\left\{{}\begin{matrix}x+2y=4\\x+y+3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=6\end{matrix}\right.\) (thỏa mãn)
Trường hợp 3: \(\left\{{}\begin{matrix}x+2y=2\\x+y+3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\) (thỏa mãn)
Trường hợp 4: \(\left\{{}\begin{matrix}x+2y=-2\\x+y+3=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=3\end{matrix}\right.\) (thỏa mãn)
Vậy: \(\left(x,y\right)=\left[\left(1;0\right),\left(-8;6\right),\left(-4;3\right),\left(-8;3\right)\right]\)
a) (2x-5)y+2y-10=0 <=> 2xy-3y = 10 <=> y(2x-3)=10 <=> y=\(\frac{10}{2x-3}\) với y là số nguyên
=> 2x-3 là ước của 10
ta có bảng sau
2x-3 | 10 | 5 | 2 | 1 | -1 | -2 | -5 | -10 |
x | Loại | 4 | Loại | 2 | 1 | Loại | -1 | Loại |
y | 2 | 10 | -10 | -2 |
b)
3xy + 21x-y-11=0 <=> y(3x-1)=-(21x-11) <=> -y=\(\frac{21x-11}{3x-1}\) =\(\frac{7\left(3x-1\right)-4}{3x-1}\)=7-\(\frac{4}{3x-1}\)với -y nguyên nên 3x-1 là ước của 4
3x-1 | 4 | 2 | 1 | -1 | -2 | -4 |
x | Loại | 1 | Loại | 0 | Loại | -1 |
y | -5 | -11 | -8 |
a) ( 2x - 5 )y + 2y - 10 = 0
<=> 2xy - 5y + 2y - 10 = 0
<=> 2xy - 3y - 10 = 0
<=> y( 2x - 3 ) - 10 = 0
<=> y( 2x - 3 ) = 10
Ta có bảng sau :
2x-3 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 1 | 2,5 | 0,5 | 4 | -1 | 6,5 | -3,5 |
y | 10 | -10 | 5 | -5 | 2 | -2 | 1 | -1 |
Vì x , y nguyên nên các cặp ( x ; y ) = { ( 2 ; 10 ) , ( 1 ; -10 ) , ( 4 ; 2 ) , ( -1 ; -2 ) }
b) 3xy + 21x - y - 11 = 0
<=> 3x( y + 7 ) - 1( y + 7 ) - 4 = 0
<=> ( 3x - 1 )( y + 7 ) - 4 = 0
<=> ( 3x - 1 )( y + 7 ) = 4
Ta có bảng sau :
3x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
y+7 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 2/3 | 0 | 1 | -1/3 | 5/3 | -1 |
y | -3 | -11 | -5 | -9 | -6 | -8 |
Vì x, y nguyên nên các cặp ( x ; y ) = { ( 0 ; -11 ) , ( 1 ; -5 ) , ( -1 ; -8 ) }