Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+y^2=9900 (1)
do x^2,y^2 chia cho 4 dư 0 hoặc 1, mà tổng x^2 +y^2(là 9900) chia hết cho 4 nên x và y đều chẵn
Đặt x=2a ,y=2b với a,b là các số nguyên
Ta có (2a)^2+(2b)^2=9900
<=>a^2+b^2=2465 (2)
VT của (2) chia cho 4 dư 0,1,2.Còn VP chia cho4 dư 3
Do đó phương trình (2) không có nghiệm nguyên, tức là phương trình (1) không có nghiệm nguyên
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
Lời giải:
$x^2+x=y^2$
$\Leftrightarrow x(x+1)=y^2$
Vì $gcd(x,x+1)=1$ nên để $x(x+1)=y^2$ thì bản thân mỗi số $x,x+1$ là 1 scp.
Đặt $x=a^2, x+1=b^2$ với $a,b$ là stn.
$\Rightarrow (x+1)-x=b^2-a^2$
$\Leftrightarrow 1=b^2-a^2=(b-a)(b+a)$
Vì $b,a\in\mathbb{N}$ nên $b+a=b-a=1$
$\Rightarrow b=1, a=0\Rightarrow x=0$
$y^2=x^2+x=1\Rightarrow y=\pm 1$
Vậy $(x,y)=(0,\pm 1)$