K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6

a/

$x+y=xy$

$\Leftrightarrow xy-x-y=0$

$\Leftrightarrow x(y-1)-(y-1)=1$

$\Leftrightarrow (y-1)(x-1)=1$

Do $x,y$ nguyên nên $x-1,y-1$ cũng nguyên. Mà tích của chúng bằng 1 nên ta xét các TH sau:

TH1: $x-1=1, y-1=1\Rightarrow x=2; y=2$ (tm)

TH2: $x-1=-1, y-1=-1\Rightarrow x=0; y=0$ (tm)

 

AH
Akai Haruma
Giáo viên
23 tháng 6

b/

$5xy-2y^2-2x^2=-2$

$\Leftrightarrow 2x^2-5xy+2y^2=2$

$\Leftrightarrow (2x-y)(x-2y)=2$

Do $x,y$ nguyên nên $2x-y, x-2y$ cũng là số nguyên. Mà tích của chúng bằng 2 nên ta xét các TH sau:
TH1: $2x-y=1, x-2y=2$

$\Rightarrow x=0; y=-1$

TH2: $2x-y=-1, x-2y=-2$

$\Rightarrow x=0; y=1$

TH3: $2x-y=2, x-2y=1$

$\Rightarrow x=1; y=0$

TH4: $2x-y=-2, x-2y=-1$

$\Rightarrow x=-1; y=0$

15 tháng 8 2020

đặt \(A=x^2+y^2+2x\left(y-1\right)+2y=x^2+y^2+2xy-2x+2y=\left(x+y\right)^2-2\left(x-y\right)\)

do A là số chính phương => \(\left(x+y\right)^2-2\left(x+y\right)\)cũng là số chính phương

\(\Leftrightarrow-2\left(x-y\right)=0\)

\(\Leftrightarrow x=y\)

25 tháng 2 2021

https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813

10 tháng 7 2021

Cộng vế với vế ta được

x2 + 2y + 1 + y2 + 2x + 1 + z2 + 2x + 1 = 0 

<=> (x2 + 2x + 1) + (y2 + 2y + 1) + (z2 + 2z + 1) = 0

<=> (x + 1)2 + (y + 1)2 + (z + 1)2 = 0

<=> \(\hept{\begin{cases}x+1=0\\y+1=0\\z+1=0\end{cases}}\Leftrightarrow x=y=z=-1\)

Khi đó A = x2000 + y2000 + z2000

= (-1)2000 + (-1)2000 + (-1)2000 = 1 + 1 + 1 = 3

Vậy A = 3