K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2022

\(\left|2x-3y\right|+\left|2y+3z\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-3y=0\\2y+3z=0\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3z=-2y\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3y}{2}\\z=\dfrac{-2y}{3}\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow x=y=z=0\)

 

 

13 tháng 2 2020

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)

=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)

=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)

=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)

=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)

Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)

=>2x-3y=0 và 2y+3z=0 và x+y+x/z=0

=>x/3=y/2 và y/-3=z/2 và x+y+x/z=0

=>x/9=y/6=z/-4 và x+y+x/z=0

x/9=y/6=z/-4=k

=>x=9k; y=6k; z=-4k

x+y+x/z=0

=>9k+6k+9k/-4k=0

=>15k=9/4

=>k=9/60=3/20

=>x=27/20; y=9/10; z=-3/5

10 tháng 10 2016

\(A=\frac{1-2x}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)

Vậy để A nguyên thì: \(x+3\inƯ\left(7\right)\)

Mà Ư(7)={1;-1;7;-7}

=>x+3={1;-1;7;-7}

Ta có bảng sau:

x+31-17-7
x-2-44-10

Vậy x={-10;-4;-2;4}

 

10 tháng 10 2016

Ta có:

\(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-\frac{2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)

Để \(A\in Z\Leftrightarrow\frac{7}{x+3}\in Z\)

\(\Rightarrow x+3\inƯ\left(7\right)\)

\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)

Các giá trị A nguyên tương ứng là: 5; -9; -1; -3

Vậy \(\begin{cases}x=-2\\A=5\end{cases}\)\(\begin{cases}x=-4\\A=-9\end{cases}\)\(\begin{cases}x=4\\A=-1\end{cases}\)\(\begin{cases}x=-10\\A=-3\end{cases}\)