K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

x2-y2=y+1

4x2-4y2=4y+4

4x2-4y2-4y-4=0=4x2-4y2-4y-1-3

4x2-(4y2+4y+1)-3=0

4x2-(2y+1)2=3

(2x-2y-1)(2x+2y+1)=3

vì x,y thuộc Z

=>2x-2y-1, 2x+2y+1 thuộc Z

=>2x-2y-1, 2x+2y+1 thuộc Ư(3)

Bạn tự lập bảng rồi tính nốt nha

15 tháng 9 2018

Khó quá bn ơi !

29 tháng 9 2018

x(x² + x + 1) = 4y(y + 1)

<=> (x + 1)(x² + 1) = (2y + 1)²

Dễ dàng thấy là: x + 1 và x² + 1 nguyên tố cùng nhau nên x + 1 và x² + 1 là 2 số chính phương.

=> x²; x² + 1 là 2 số chính phương liên tiếp 

=> x = 0; y = 0 hoặc y = - 1

21 tháng 1 2017

x2 + y2 + z2 = xy + 3y + 2z - 4

\(\Leftrightarrow\)(x2 - xy + \(\frac{y^2}{4}\)) + (z2 - 2z + 1) + (\(\frac{3y^2}{4}\) - 3y + 3) = 0

\(\Leftrightarrow\) (x - \(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0

\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)

21 tháng 1 2017

Thanks!

14 tháng 9 2017

\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)

\(\Leftrightarrow x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)

\(\Leftrightarrow\left(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)(1)

Ta thấy \(\left(x-\frac{1}{x}\right)^2\ge0;\left(y-\frac{1}{y}\right)^2\ge0\forall x;y\) nên \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2\ge0\forall x;y\)

Để (1) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{x}\right)^2=0\\\left(y-\frac{1}{y}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy \(x=y=1\)

14 tháng 9 2018

Từ gt => y+2=x2+1=y

         =>y+2=y (vô lý)=>vô nghiệm

5 tháng 1 2018

Violympic toán 8

16 tháng 10 2018

\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2xy+2xz+2yz+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2-3x^2-3y^2-3z^2\)

=0 không phụ thuộc vào biến

bài này đơn giản quá

2 tháng 5 2016

giúp mình đi