K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

a) Vi |x| thuoc N

=> x={0;1;2}

b) tuong tu nhu cau a)

=> x={6;7;8;9;...}

c) tuong tu nhu cau a)

=>x={3;4}

d) ta co: |x|+|y|=3=|0|+|3|=|1|+|2|=|0|+|-3|=|-1|+|-2|

|x|0321-30-1-2
|y|30120-3-2-1

vay...

18 tháng 12 2017

TU DUNG NO BI LOI NEN KO LAM DC CAU E)

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

10 tháng 12 2021

\(a,\) Vì \(x,y\in Z\) nên \(\left(3x+2\right):3R2;R1\)

Mà \(\left(3x+2\right)\left(y-8\right)=12\) nên \(3x+2\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Do đó \(3x+2\in\left\{-4;-1;2\right\}\)

\(\Rightarrow x\in\left\{-2;-1;0\right\}\)

Với \(x=-2\Rightarrow\left(-4\right)\left(y-8\right)=12\Rightarrow y-8=-3\Rightarrow y=5\)

Với \(x=-1\Rightarrow\left(-3\right)\left(y-8\right)=12\Rightarrow y-8=-4\Rightarrow y=4\)

Với \(x=0\Rightarrow2\left(y-8\right)=12\Rightarrow y-8=6\Rightarrow y=14\)

Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-2;5\right);\left(-1;4\right);\left(0;14\right)\)

10 tháng 12 2021

\(b,\) Vì \(x,y\in Z\) nên \(\left(5x-4\right):5R1;R4\)

Mà \(\left(5x-4\right)\left(y+3\right)=-18\)

\(\Rightarrow5x-4\inƯ\left(-18\right)=\left\{-18;-9;-6;-3;-2;-1;1;2;3;6;9;18\right\}\\ \Rightarrow5x-4\in\left\{-9;1;6\right\}\\ \Rightarrow x\in\left\{-1;1;2\right\}\)

Với \(x=-1\Rightarrow-9\left(y+3\right)=-18\Rightarrow y+3=2\Rightarrow y=-1\)

Với \(x=1\Rightarrow y+3=18\Rightarrow y=15\)

Với \(x=2\Rightarrow6\left(y+3\right)=18\Rightarrow y+3=3\Rightarrow y=0\)

Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-1;-1\right);\left(1;15\right);\left(2;0\right)\)

a) Ta có: (x+1)(y-2)=-2

nên x+1; y-2 là các ước của -2

Trường hợp 1:

\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}

b) Ta có: (x+1)(xy-1)=3

nên x+1;xy-1 là các ước của 3

Trường hợp 1: 

\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)

c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vây: (x,y)=(-1;1)

d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)=(0;0)

4 tháng 2 2021

thanks bạn

 

1 tháng 10 2021

a) x=3 y=13

x=16 y=0

x=4 y=5

x=9 y=1

    

28 tháng 9 2021

a) \(\left(x-2\right)\left(y+1\right)=14\)

Do \(x,y\in N\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=1\\y+1=14\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=14\\y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+1=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=7\\y+1=2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\left(tm\right)\\y=13\left(tm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=16\left(tm\right)\\y=0\left(tm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\left(tm\right)\\y=6\left(tm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=9\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)

 

28 tháng 9 2021

i cảm ơ

 

9 tháng 12 2021

\(a,\text{Vì }x,y\in N\Leftrightarrow x+2\ge2;y+3\ge3\\ \Leftrightarrow\left(x+2\right)\left(y+3\right)=6=2\cdot3=3\cdot2\\ \Leftrightarrow\left\{{}\begin{matrix}x+2=2\\y+3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;0\right)\)

\(b,\Leftrightarrow\left(x-3\right)\left(y+1\right)=7\cdot1=1\cdot7\\ \left\{{}\begin{matrix}x-3=7\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=0\end{matrix}\right.\\ \left\{{}\begin{matrix}x-3=1\\y+1=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(10;0\right);\left(4;6\right)\right\}\)

Giải:

a) \(\left(x-1\right)\left(y+2\right)=7\) 

\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

Ta có bảng giá trị:

x-1-7-117
y+2-1-771
x-6028
y-3-95-1

Vậy \(\left(x;y\right)=\left\{\left(-6;-3\right);\left(0;-9\right);\left(2;5\right);\left(8;-1\right)\right\}\) 

b) \(\left(x-2\right)\left(3y+1\right)=17\) 

\(\Rightarrow\left(x-2\right)\) và \(\left(3y+1\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\) 

Ta có bảng giá trị:

x-2-17-1117
3y+1-1-17171
x-151319
y\(\dfrac{-2}{3}\) (loại)-6 (t/m)\(\dfrac{16}{3}\) (loại)0 (t/m)

Vậy \(\left(x;y\right)=\left\{\left(1;-6\right);\left(19;0\right)\right\}\)

30 tháng 6 2021

Ko ghi lại đề nhé 

a) \(TH1\left[{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

\(TH2:\left[{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\)

\(TH3:\left[{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

\(TH4:\left[{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)

b) \(TH1:\left[{}\begin{matrix}x-2=1\\3y+1=17\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\y=\dfrac{16}{3}\end{matrix}\right.=>Loại\)

\(TH2:\left[{}\begin{matrix}x-2=-1\\3y+1=-17\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-6\end{matrix}\right.Chọn\)

\(TH3:\left[{}\begin{matrix}x-2=17\\3y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=19\\y=0\end{matrix}\right.=>Chọn\)

\(TH4:\left[{}\begin{matrix}x-2=-17\\3y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-15\\y=\dfrac{-2}{3}\end{matrix}\right.=>Loại\)

Bạn tự kết luận hộ mk nha

a: Sửa đề: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{2}{-z}=\dfrac{-t}{-9}\)

=>\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{-2}{z}=\dfrac{t}{9}=-2\)

=>\(x=-2\cdot5=-10;y=-2\cdot\left(-3\right)=6;z=\dfrac{-2}{-2}=1;t=9\cdot\left(-2\right)=-18\)

b: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)

=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)

=>\(\left\{{}\begin{matrix}x=4\cdot3=12\\y^2=\dfrac{4}{4}=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)