Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) \(\left(x-30\right)\left(2y+1\right)=7=1.7=\left(-1.\right)\left(-7\right)\)
Ta xét bảng:
x-30 | 1 | 7 | -1 | -7 |
2y+1 | 7 | 1 | -7 | -1 |
x | 31 | 37 | 29 | 23 |
y | 3 | 0 | -4 | -1 |
c) \(xy+3x-7y=21\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=0\Leftrightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=3\end{cases}}\).
b), d) bạn làm tương tự.
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+=0 <=> 50.x+2500=0 => x=-2500/50=-50
ta có
\(x^2+xy-2y-3x+2=1\Leftrightarrow x^2-3x+1+y\left(x-2\right)=0\)
\(\Leftrightarrow y=-\frac{x^2-3x+1}{x-2}=-x+1+\frac{1}{x-2}\) là số nguyên khi x-2 là ước của 1 hay
\(x-2=\pm1\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y=-1\\x=1\Rightarrow y=-1\end{cases}}\)
TH1: y=-3 (sai)
TH2: y khác -3 vậy x= (11+2y) / (y+3)=2+5/(y+3)
Vì x thuộc Z nên 5/(y+3) phải là số nguyên
==> y+3 phải là ước của 5 ==> y+3 có thể bằng 1, -1, 5, -5. từ đó bạn tìm được x rồi.
xy+3x-2y=11
=>x(y+3)-2y-6=5
=>x(y+3)-(2y+6)=5
=>x(y+3)-2(y+3)=5
=>(x+2)(y+3)=5
Bạn kẻ bảng ra nha
\(xy+3x-2y=11\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y+3\right)\)là các ước nguyên của 5
\(Th1:x-2=1\Leftrightarrow x=3\)
\(y+3=5\Leftrightarrow y=3\)
\(Th2:x-2=-1\Leftrightarrow x=-1\)
\(y+3=-5\Leftrightarrow y=-8\)
\(Th3:x-2=5\Leftrightarrow x=7\)
\(y+3=1\Leftrightarrow y=1\)
\(Th4:x-2=-5\Leftrightarrow x=-3\)
\(y+3=-1\Leftrightarrow y=-4\)
Vậy: \(\left(x;y\right)\in\left\{3,2\right\};\left\{1,-8\right\};\left\{7;-2\right\};\left\{-3;-4\right\}\)
Giải
Theo đề bài, ta có: \(xy-3x+2y-11=0\)
\(\Leftrightarrow x\left(y-3\right)+2y-6=5\)
\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=5\)
\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=5\)
\(\Leftrightarrow\hept{\begin{cases}x+2\\y-3\end{cases}}\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng:
\(x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(y-3\) | \(5\) | \(-5\) | \(1\) | \(-1\) |
\(x\) | \(-1\) | \(-3\) | \(3\) | \(-7\) |
\(y\) | \(8\) | \(-2\) | \(4\) | \(2\) |
Vậy \(\left(x,y\right)\in\left\{\left(-1,8\right);\left(-3,-2\right);\left(3,4\right);\left(-7,2\right)\right\}\)