K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

28 tháng 2 2021

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

12 tháng 10 2021

Bài 1

a) \(x=x^5\)

\(x^5-x=0\)

\(x\left(x^4-1\right)=0\)

\(x=0\) hoặc \(x^4-1=0\)

\(x^4-1=0\)

\(x^4=1\)

\(x=1\)

Vậy x = 0; x = 1

b) \(x^4=x^2\)

\(x^4-x^2=0\)

\(x^2\left(x^2-1\right)=0\)

\(x^2=0\) hoặc \(x^2-1=0\)

*) \(x^2=0\)

\(x=0\)

*) \(x^2-1=0\)

\(x^2=1\)

\(x=1\)

Vậy \(x=0\)\(x=1\)

c) \(\left(x-1\right)^3=x-1\)

\(\left(x-1\right)^3-\left(x-1\right)=0\)

\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)

\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)

*) \(x-1=0\)

\(x=1\)

*) \(\left(x-1\right)^2-1=0\)

\(\left(x-1\right)^2=1\)

\(x-1=1\) hoặc \(x-1=-1\)

**) \(x-1=1\)

\(x=2\)

**) \(x-1=-1\)

\(x=0\)

Vậy \(x=0\)\(x=1\)\(x=2\)

 

a) Ta có: (x+1)(y-2)=-2

nên x+1; y-2 là các ước của -2

Trường hợp 1:

\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}

b) Ta có: (x+1)(xy-1)=3

nên x+1;xy-1 là các ước của 3

Trường hợp 1: 

\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)

c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vây: (x,y)=(-1;1)

d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)=(0;0)

4 tháng 2 2021

thanks bạn

 

12 tháng 8 2017

a)xy=-7

=>x và y khác dấu

=>nếu x<0 thì y>0 khi đó x=-1 và y =7 hoặc x=-7 và y=1

=>nếu x>0 thì y<0 khi đó x=1 và y=-7 hoặc x=7 và y=-1

b)vì 3>0 nên x-1 và ý+2 cùng dấu (cùng âm hoặc cùng dương)

từ đó bạn tự giải tiếp nhé

c)45x55+(-45)^2

=45x55+(-45)x(-45)

=45(55+(--45))

=45x100=4500

18 tháng 1 2017

xy - xz + yz - z mũ 2 = -1

x(y-z) + z(y-z) = -1

(y-z)(x+z) = -1

=> (y-z) ; (x+z) thuộc Ư(-1)

=> 2 trường hợp 

trường hợp 1: x+z =1 => x= 1 - z hay x= +(1-z)

              và y-z= -1 => y = -1 + z hay y= -(1-z)

trường hợp 2: x+z=-1=> x= - (1+z)

             và y-z = 1 => y= +(1+z)

từ 2 trường hợp đó ta có x và y đối nha

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

15 tháng 1 2021

a. (x + 2) * (y - 5) = -7

<=> (y - 5) = -\(\dfrac{7}{x+2}\)

x ∈ Z => 7 chia hết cho (x + 2)

=> x = 5

<=> y -5 = -1

y = -1 + 5

y = 4

Vậy x = 5 và y = 4 

b. (x-1) * (xy-3) = -5

<=> (xy-3) = -\(\dfrac{5}{x-1}\)

x ∈ Z => 5 chia hết cho x-1

=>  x =6 ; -4; 2

TH1 : x = 6 => 6y-3

<=> 6y - 3 = -\(\dfrac{5}{6-1}\)

=> 6y - 3 = -1

6y = -1+3

6y = 2

y = 6:2

y = 3

TH2 : x = -4

<=> -4y - 3 = - \(\dfrac{5}{-4-1}\)

<=> -4y - 3 = 1

-4y             =  1 + 3 

-4y             = 4

y                 = 4 : -4

y                 = -1

TH3 : x = 2

<=> 2y - 3 = -\(\dfrac{5}{2-1}\)

<=> 2y - 3 = -5 

2y             = -5 + 3

2y             = -2

y               = -2 : 2

y               = -1

Vậy x =2 và y = -1 hoặc x = -4 và y = -1

4 tháng 2 2019

a) (3x+1 + 3x) : 2 = 18

3x.(3+1) = 36

3x = 9 = 32

=> x= 2

b) (x+3)2 + (y-5)2 = 0

mà \(\left(x+3\right)^2\ge0;\left(y-5\right)^2\ge0.\)

=> x = - 3; y = 5