Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x ( y - 1 ) + y = 6
=> 3xy - 3x + y = 6
=> 3x.( y - 1 ) + ( y - 1 ) + 1 = 6
=> ( y - 1 ) . ( 3x + 1 ) = 6 - 1
=> ( y - 1 ) . ( 3x + 1 ) = 5 = 1 . 5 = 5 . 1 = ( -1 ) . ( -5 ) = ( -5 ) . ( -1 )
TH1 :
\(\hept{\begin{cases}y-1=1\\3x+1=5\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x=\frac{4}{3}\end{cases}}\Rightarrow\text{loại}\)
TH2 :
\(\hept{\begin{cases}y-1=5\\3x+1=1\end{cases}}\Rightarrow\hept{\begin{cases}y=6\\x=0\end{cases}}\)
TH3 :
\(\hept{\begin{cases}y-1=-1\\3x+1=-5\end{cases}}\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
TH4 :
\(\hept{\begin{cases}y-1=-5\\3x+1=-1\end{cases}}\Rightarrow\hept{\begin{cases}y=-4\\x=\frac{-2}{3}\end{cases}}\Rightarrow\text{loại}\)
Vậy : ( x ; y ) \(\in\){ ( 0 ; 6 ) ; ( -2 ; 0 }
b. Câu hỏi của Super man - Toán lớp 7 - Học toán với OnlineMath
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
1) a) Ta có \(\left(x-2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
\(\left(z+4\right)^6\ge0\)
mà \(\left(x-2\right)^2+\left(y+3\right)^4+\left(z+4\right)^6=0\)
nên \(x-2=0\Rightarrow x=2\)
\(y+3=0\Rightarrow y=-3\)
\(z+4=0\Rightarrow z=-4\)
b) \(3x=2y\Rightarrow x=\frac{2y}{3}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow z=\frac{4y}{5}\)
Do đó \(x+y+z=-3,9\)
hey \(\frac{2y}{3}+\frac{4y}{5}+y=-3,9\)
giải tìm ra y thế vào lại để tìm x,z
2)
a)
\(-\frac{5}{4}-\frac{-7}{12}+\frac{-2}{3}+\frac{5}{6}-\frac{3}{2}=-\frac{15}{12}+\frac{7}{12}-\frac{8}{12}+\frac{10}{12}-\frac{18}{12}=\frac{-15+7-8+10-18}{12}\)
\(=-\frac{24}{12}=-2\)
b) \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)
\(\Rightarrow S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\frac{1}{2}S=\frac{2^{100}-1}{2^{101}}\)
\(S=\frac{2^{100}-1}{2^{100}}\)
Ta có : \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+3\right)^4\ge0\forall y\)
\(\left(z+4\right)^2\ge0\forall z\)
Mà : ( x - 2 )2 + ( y + 3 )4 + ( z + 4 )6 = 0
Nên : pt <=> x - 2 = 0
y + 3 = 0
z + 4 = 0
<=> x = 2
y = -3
z = -4
a/Ta có :
\(x+y+1=0\Leftrightarrow x+y=-1\)
\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
Mà \(x+y=-1\)
\(\Leftrightarrow A=x^2.\left(-1\right)-y^2.\left(-1\right)+x^2-y^2+2.\left(-1\right)+3\)
\(\Leftrightarrow A=-x^2+y^2+x^2-y^2-2+3\)
\(\Leftrightarrow A=\left(-x^2+x\right)+\left(y^2-y^2\right)-\left(2-3\right)\)
\(\Leftrightarrow A=0+0-\left(-1\right)\)
\(\Leftrightarrow A=1\)
Vậy ..
a) Từ đề bài suy ra
2^x+1.3^y=(3.2^2)^x
2^x+1.3^y=3^x.(2^2)^x.Vì cách phân tích là duy nhất.
2^x+1=2^2x và 3^y=3^x
x+1=2x;y=x
x=y=1
b) 10^x:5^y=20^y
10^x =20^y.5^y
10^x = (20.5)^y
10^x = 100^y
10^x = 10^2y
x = 2y
Vậy x= 2y
1. \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)
Vì \(\left(3x-5\right)^{2010}\ge0\forall x\); \(\left(y-1\right)^{2012}\ge0\forall y\); \(\left(x-z\right)^{2014}\ge0\forall x,z\)
\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\y=1\\x=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\)
Vậy \(x=z=\frac{5}{3}\)và \(y=1\)
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)