K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
14 tháng 7 2016
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
2 tháng 11 2023
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
\(\hept{\begin{cases}x+y=4\\\left|x+1\right|+\left|y-2\right|=3\end{cases}}\)
Vì \(\left|x+1\right|\ge0;\left|y-2\right|\ge0\)
=>\(\left|x+1\right|+\left|y-2\right|\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+1+y-2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+y=4\end{cases}}\)
Vậy x=4-y ; y=4-x
áp dụng BĐT giá trị tuyệt đối ta có:
\(\left|x+1\right|+\left|y-2\right|\ge\left|x+y+1-2\right|=3\)
dấu ''='' xảy ra khi và chỉ khi \(\left(x+1\right)\left(y-2\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}}\\\hept{\begin{cases}x+1< 0\\y-2< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x>0\\y>1\end{cases}}\\\hept{\begin{cases}x< -1\\y< 2\end{cases}}\left(loai\right)\end{cases}}\)từ chỗ đó tự làm được rồi chứ? xét 2 trường hợp 2 thừa số cùng âm hoặc cùng dương