K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

Ta có x^2+6x=y^2

         x^2+6x+9 =y^2+9

         (x+3)^2+9=y^2

        y^2-(x+3)^2 =9

     (y+x+3)(y-x-3)=9

Lập bảng xét các trường hợp ra    

7 tháng 8 2019

Ta có:\(x^2+6x=y^2\)

\(\Leftrightarrow x^2+6x+9=y^2+9\)

\(\Leftrightarrow\left(x+3\right)^2=y^2+9\)

Do VT là số chính phương nên VP là số chính phương

Đặt \(y^2+9=k^2\left(k\in Z\right)\)

Khi đó ta có:

\(y^2-k^2=-9\)

\(\Leftrightarrow\left(y-k\right)\left(y+k\right)=-9=\left(-3\right)\cdot3=3\cdot\left(-3\right)=\left(-1\right)\cdot9=\left(-9\right)\cdot1\)

Với \(\left(y-k\right)\left(y+k\right)=\left(-3\right)\cdot3\)

\(\Rightarrow\hept{\begin{cases}y-k=-3\\y+k=3\end{cases}}\)

\(\Rightarrow2y=0\)

\(\Rightarrow y=0\)

Thay y=0 vào ta được x=0 hoặc x=6

Làm tương tự các trường hợp còn lại ta thu được các nghiệm (x;y) của pt là:

\(\left(-8;-4\right);\left(-8;4\right);\left(2;4\right);\left(2;-4\right);\left(-6;0\right);\left(0;0\right)\)

24 tháng 6 2017

\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)

24 tháng 6 2017

b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-3x-3x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)

\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)

Hay \(P\ge10\) với mọi giá trị của \(x\in R\).

Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)

\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy.....

Chúc bạn học tốt!!!

10 tháng 11 2016

Bài 2:

\(A=-2x^2+3x-5\)

\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)

\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)

\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)

Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)

10 tháng 11 2016

Bài 1:

a)x2-4x2y+4xy

=x(x-4xy+y)

b)đề sai

19 tháng 8 2017

\(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)

\(\Rightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)

\(\Rightarrow\left(x-2\right)\left(x+y-2\right)=3\)

\(\Rightarrow x-2\inƯ\left(3\right);x+y-2\inƯ\left(3\right)\)

\(\Rightarrow x-2\)\(x+y-2\in\left\{\pm1;\pm3\right\}\).

... Tìm đc x ở vế x - 2 xog rồi thay vào x + y - 2 tính y tiếp.

21 tháng 8 2017

cam on ban nhieu

1 tháng 11 2017

Phương trình nghiệm nguyên đáng sợ lắm

Ta có: \(x^2-y^2=102\Rightarrow\left(x-y\right)\left(x+y\right)=102=102.1=51.2=\left(-102\right)\left(-1\right)=\left(-51\right)\left(-2\right)\)

Suy ra : \(\left[{}\begin{matrix}x+y=102,x-y=1\\x+y=51,x-y=2\\x+y=-1,x-y=-102\\x+y=-2,x-y=-51\end{matrix}\right.\)

Giải ra thấy x, y đều không phải là số nguyên nên \(x,y\in\varnothing\)

Ps: bước cuối ko giải ra được thì giở toán tổng hiệu lớp 4 đọc lại ok

16 tháng 2 2019

x(y - 2) + 2y = 8

=> x(y - 2) + 2(y - 2) = 4

=> (x + 2)(y - 2) = 4 = 1 . 4 = 4 . 1 = 2 . 2

Lập bảng :

x +  2 1 4 -1

 -4

 2 -2
y - 2 4 1 -4

 -1

 2  -2
 x-1 2

 -3

 -6 0 -4
 y 6 3 -2

 1  

 4 0

Vậy ...

6 tháng 12 2017

\(5x^2+6x-4xy-2y+2+y^2=0\)

\(\Leftrightarrow4x^2+x^2+2x+4x-4xy-2y+1+1+y^2=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x-2y\right)+\left(x^2+2x+1\right)+1=0\)

\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(2x-y+1\right)^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y+1\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2.\left(-1\right)-y+1=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2-y+1=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1-y=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

Vậy \(x=-1\)\(y=-1\)