Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)

\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1

a) \(\frac{x}{7}=\frac{9}{y}\)
\(\Rightarrow9.7=x.y\). Mà x > y
\(\Rightarrow\orbr{\begin{cases}x=9\\y=7\end{cases}}\)
b) \(\frac{-2}{x}=\frac{y}{5}\) (x < 0 < y)
\(x< 0\Rightarrow\left(-x\right)\) (Âm x)
\(y>0\Rightarrow y\) (y)
\(\Rightarrow x< y\)
Thế vào:
\(\frac{-2}{-x}=\frac{y}{5}\)
\(\Rightarrow\left(-2\right).5=\left(-x\right).y\)
\(x< y\Rightarrow\orbr{\begin{cases}x=-2\\y=5\end{cases}}\)

b) Ta có :
\(\frac{x-4}{y-3}=\frac{4}{3}\)
\(\Leftrightarrow\)\(\frac{x-4}{4}=\frac{y-3}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-4}{4}=\frac{y-3}{3}=\frac{x-4-\left(y-3\right)}{4-3}=\frac{x-4-y+3}{1}=\frac{5-1}{1}=4\)
Do đó :
\(\frac{x-4}{4}=4\Rightarrow x-4=4.4=16\Rightarrow x=16+4=20\)
\(\frac{y-3}{3}=4\Rightarrow y-3=4.3=12\Rightarrow y=12+3=15\)
Vậy \(x=20\)và \(y=15\)

\(1)\)
Để \(\frac{13}{a-1}\) là số nguyên thì \(13⋮\left(a-1\right)\)\(\Rightarrow\)\(\left(a-1\right)\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)
Suy ra :
\(a-1\) | \(1\) | \(-1\) | \(13\) | \(-13\) |
\(a\) | \(2\) | \(0\) | \(14\) | \(-12\) |
Vậy \(a\in\left\{2;0;14;-12\right\}\)
\(2)\)
Ta có :
\(\frac{x}{5}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
Do đó :
\(\frac{x}{5}=2\Rightarrow x=2.5=10\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)
Vậy x=10 và y=6

\(\frac{1}{8}< \frac{x}{12}< \frac{y}{9}< \frac{1}{4}\)
=> x = 2, y = 45
Bài này có thể thử chọn
\(\Rightarrow\)(x-2)(y+1)=3 (nhân tích chéo) .Không cần dài dòng , đến đây lập bảng