K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

(x+5)(y+6)=3xy

xy + 5x + 6y + 30= 3xy

5x + 6y + 30 -2xy = 0

x(5 - 2y) - 3.(5-2y) + 45 = 0

(x - 3)(5 - 2y) = -45

Suy ra (5 - 2y) là các ước của -45: {-1,1, -3, 3, -9,9, -15, 15, -45, 45}

Đến đây bạn xét từng trường hợp là ra nhé ^^

10 tháng 4 2017

x^2+y^2-x+y-xy+2=0

x^2- (y+1)x+y^2+y+2=0

điều kiện cần

\(\Delta_x=-3y^2-2y-7=k^2\)

\(3y^2+2y+7< =0\)=>vô nghiệm

10 tháng 4 2017

cảm ơn bạn nhiều nhé

xin lỗi vì làm phiền hơi nhiều

29 tháng 8 2021

\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)

Tới đây giải ra các trường hợp thui

 

10 tháng 11 2018

Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c 
=> p - a = (a + b + c)/2 - a 
=> p - a = (b + c + a - 2a)/2 
=> p - a = (b + c - a)/2 
=> 2(p - a) = b + c - a (1) 
Tương tự ta chứng minh được: 
2(p - b) = a + c - b (2) 
2(p - c) = a + b - c (3) 
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b) 
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ] 
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] 
Bây giờ ta đã đưa bài toán về chứng minh 
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Ta có: (x - y)² ≥ 0 
<=> x² - 2xy + y² ≥ 0 
<=> x² - 2xy + y² + 4xy ≥ 4xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
=> với x + y ≠ 0 và xy ≠ 0 
=> (x + y)²/(x+ y) ≥ 4xy/(x + y) 
=> (x + y) ≥ 4xy/(x + y) 
=> (x + y)/xy ≥ (4xy)/[xy(x + y)] 
=> 1/x + 1/y ≥ 4/(x + y) (*) 
Áp dụng (*) với x = p - a và y = p - b ta được: 
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4) 
Chứng minh tương tự ta được: 
1/(p - a) + 1/(p - c) ≥ 4/b (5) 
1/(p - b) + 1/(p - c) ≥ 4/a (6) 
Cộng vế với vế của (4);(5) và (6) ta được: 
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c) 
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) ) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Dấu bằng xảy ra <=> a = b = c. 

5 tháng 12 2016

A (min) khi

\(\frac{4}{x}=\frac{1}{4y}=>x=16y\)

\(y=\frac{5}{4.17};x=\frac{5.16}{4.17}\)\(x.y=\frac{5.5}{17.17}\)

A(min)=2.\(2\sqrt{\frac{1}{xy}}=2.\frac{17}{5}=\frac{34}{5}\)

7 tháng 12 2016

Bạn có thể giải thích rõ hơn cho mình dc ko?? Mình ko hiểu cho lắm!

30 tháng 6 2017

2.  ĐK:  \(x\ge-5\)

\(\Leftrightarrow\left(x+5-6\sqrt{x+5}+9\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2=0\)

\(\forall x\ge-5\)  ta luôn có  \(\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2\ge0\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\sqrt{x+5}-3=0\\x-4=0\end{cases}}\)  \(\Leftrightarrow\)  x = 4 (nhận)

30 tháng 6 2017

Muốn câu nào ? ^^ Mình giải cho ........><