Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+1\right)\left(y+4\right)=7\).
-Vì \(x,y\in Z\) nên ta có thể viết:
\(\left(x+1\right)\left(y+4\right)=1.7\) hay \(\left(x+1\right)\left(y+4\right)=7.1\) hay \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\) hay \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\)
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=1.7\):
\(\Rightarrow x+1=1\) và \(y+4=7\)
\(\Rightarrow x=0\left(tmđk\right)\) và \(y=3\left(tmđk\right)\).
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=7.1\):
\(\Rightarrow x+1=7\) và \(y+4=1\)
\(\Rightarrow x=6\left(tmđk\right)\) và \(y=-3\left(tmđk\right)\).
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\):
\(\Rightarrow x+1=-1\) và \(y+4=-7\)
\(\Rightarrow x=-2\left(tmđk\right)\) và \(y=-11\left(tmđk\right)\).
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\):
\(\Rightarrow x+1=-7\) và \(y+4=-1\)
\(\Rightarrow x=-8\left(tmđk\right)\) và \(y=-5\left(tmđk\right)\).
b) \(xy+2x-3y=-1\)
\(\Rightarrow xy+2x-3y+1=0\)
\(\Rightarrow y\left(x-3\right)=-2x-1\)
\(\Rightarrow y=-\dfrac{2x+1}{x-3}=\dfrac{2\left(x-3\right)-5}{x-3}=2-\dfrac{5}{x-3}\)
-Vì \(y\in Z\) \(\Rightarrow5⋮\left(x-3\right)\).
\(\Rightarrow\left(x-3\right)\inƯ\left(5\right)\)
\(\Rightarrow x-3\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow x\in\left\{4;2;8;-2\right\}\) (đều thỏa mãn điều kiện).
+Với \(x=4\) thì \(y=\dfrac{5}{4-3}=5\) (tmđk).
+Với \(x=2\) thì \(y=\dfrac{5}{2-3}=-5\) (tmđk).
+Với \(x=8\) thì \(y=\dfrac{5}{8-3}=1\) (tmđk)
+Với \(x=-2\) thì \(y=\dfrac{5}{-2-3}=-1\) (tmđk).
Vì (100x+3y+1).(2^x+10x+y)=225(*) nên (100x+3y+1) và (2^x+10x+y) là 2 số lẻ
Nếu x khác 0:thi 2^x+10x là 2 số chẵn để 2^x+10x+y là số lẻ thì yla so le
suy ra 3y là số lẻ thì 3y+1 là số chẵn suy ra 100x+3y+1 là số chẵn ( trái với đề bài)
khi và chỉ khi x=0 thay vào (*) ta duoc
(3y+1).(1+y)=225
vì x,y là số tự nhiên nên 3y+1 và 1+y là số tự nhiên
ma 225=5 . 45 =15.15=3.75 =9.25
lại có 3y+1 không chia hết cho 3 ,3y+1 lớn hơn 1+y
\(\Rightarrow\)\(\hept{\begin{cases}3y+1=25\\1+y=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3y=24\\y=8\end{cases}}\Leftrightarrow\hept{\begin{cases}y=8\\y=8\end{cases}}\)
vậy x=0,y=8
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
+, Nếu 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 26x+39y-17x-34y chia hết cho 17
=> 9x+5y chia hết cho 17
+, Nếu 9x+5y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 9x+5y+17x+34y chia hết cho 17
=> 26x+39y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
\(2^{x-1}=3^{y-x}\Rightarrow x-1=y-x=0\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(2^{x+1}.3^y=12^x\Rightarrow2^{x+1}.3^y=2^{2x}.3y\Rightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\Rightarrow2^{2x-x-1}=3^{y-x}\)