Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(=\frac{1+3y+1+7y}{12+4x}=\frac{2+10y}{12+4x}\)
\(=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}\)
\(\Rightarrow\frac{1+5y}{5x}=\frac{1+5y}{6+2x}\)
\(\Rightarrow5x=6x+2x\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+5y}{5.2}=\frac{1+5y}{10}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow30y=-2\)
\(\Rightarrow y=-\frac{1}{15}\)
Vậy \(x=2;y=-\frac{1}{15}\)
Ta có : \(\frac{x}{y}=\frac{2}{3}\Rightarrow x=\frac{2}{3}y\)
Thay \(x=\frac{2}{3}y\)vào A , ta được :
\(A=\frac{5.\frac{2}{3}y+3y}{6.\frac{2}{3}y-7y}\)
\(\Rightarrow A=\frac{\frac{10}{3}y+3y}{4y-7y}\)
\(\Rightarrow A=\frac{\left(\frac{10}{3}+3\right)y}{-3y}\)
\(\Rightarrow A=\frac{\frac{19}{3}y}{-3y}\)
\(\Rightarrow A=\frac{\frac{19}{3}}{-3}\)
\(\Rightarrow A=\frac{19}{3}.-\frac{1}{3}\)
\(\Rightarrow A=-\frac{19}{9}\)
Vậy \(A=-\frac{19}{9}\)
Nếu $x,y$ là số tự nhiên, $xy=1$ thì chỉ xảy ra TH $x=y=1$
Khi đó:
$\frac{5x+7y}{6x+5y}=\frac{12}{11}\neq \frac{29}{28}$
Bạn xem lại đề nhé.