K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NN
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 5 2018
x,y€0;1]
(x-1)(y-1)≥0
xy-(x+y)+1≥0
3xy-3(x+y)+3≥0:; -2(x+y)+3≥0
(x+y)≤3/2
x+y=3xy=>9(xy)^2-4(xy)≥0=> xy≥4/9
=>(x+y)€[4/3;3/2]
P=x^2+y^2-4xy=(x+y)^2-6xy=(x+y)^2-2(x+y)=[(x+y-1]^2-1
Pmin=(4/3-1)^2-1=1/9-1=-8/9
khi x+y=4 /3; xy=4/9
x=y=2/3
Pmax=(3/2-1)^2-1=1/4-1=-3/4
khi x or y =1
(x,y)=(1,1/2);(1/2;1)
20 tháng 5 2018
\(P=x^2+y^2-4xy\)
\(P=\left(x+y\right)^2-2xy-4xy\)
\(P=\left(3xy\right)^2-6xy\)
\(P=\left(3xy\right)^2-2.3xy.1+1-1\)
\(P=\left(3xy-1\right)^2-1\ge-1\)
dấu \("="\) xảy ra \(\Leftrightarrow3xy-1=0\Leftrightarrow xy=\dfrac{1}{3}\)
vậy MIN \(P=-1\Leftrightarrow xy=\dfrac{1}{3}\)
DM
0
DY
0