K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left(2x-3;y+5\right)\in\left\{\left(1;20\right);\left(2;10\right);\left(4;5\right);\left(5;4\right);\left(10;2\right);\left(20;1\right)\right\}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=1\\y+5=20\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left(2;15\right)\)

b: \(\Leftrightarrow\left(x-7;y+1\right)\in\left\{\left(1;18\right);\left(2;9\right);\left(3;6\right);\left(6;3\right);\left(9;2\right);\left(18;1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(8;17\right);\left(9;8\right);\left(10;5\right);\left(13;2\right);\left(16;1\right);\left(25;0\right)\right\}\)

25 tháng 5 2017

pt2 <=> 4x^2 -4x+1+4y^2 -4y+1=18

<=>x^2+y^2-3=x+y+1

thay vào pt 1 ta đk

căn (x+2) +3 căn ( y-1) =căn ( 5(x+y+1))

đặt căn (x+2)=a căn (y-1)=b

pt1 <=> a+3b=căn (5a^2+5b^2)

bình phương hai vế ta đk

a^2 +6ab+9b^2 =5a^2+5b^2

<=>4a^2-6ab-4b^2=0

<=>(2a+b)(a-2b)=0

sau đó bạn giải từng trường hợp rồi thay ngược lại pt 2 mà giải ra x với y

25 tháng 5 2017

cảm ơn bạn

6 tháng 8 2020

Mk cx nghĩ thế nhưng vẫn k ra

6 tháng 8 2020

Thanh Nguyễn: chắc chắn đề sai rồi, mình tính rồi kiểm tra kết quả trên 1 web toán thì kết quả giống như mình đã tính luôn!

a) A = -4x2 - 14x + 10

b) = -2y4

a: ĐKXĐ: 3-2x>=0

=>x<=3/2

b: DKXĐ: \(\left\{{}\begin{matrix}4x+1>=0\\-2x+1>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\x< =\dfrac{1}{2}\end{matrix}\right.\)

c: ĐKXĐ: x^2+2x-5<>0

hay \(x\ne-1\pm\sqrt{6}\)

d: ĐKXĐ: 2-x>0 và 4x+3>=0

=>x>=-3/4 và x<2

e: ĐKXĐ: (x+10)(x-2)<>0 và x>=-9

=>x>=-9 và x<>2

28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)


14 tháng 10 2017

a)

\(A=3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)\(2A=\left[\left(x-y\right)-\left(x+y\right)\right]^2+5\left(x-y\right)^2-5\left(x+y\right)^2\)

\(2A=4y^2+5\left[\left(x-y\right)-\left(x+y\right)\right]\left[\left(x-y\right)+\left(x+y\right)\right]\)\(2A=4y^2+5\left[-2y\right]\left[2x\right]=4y^2-20xy=4y\left(y-5x\right)\\ \)\(A=2y\left(y-5x\right)\)

a: y=x+15-3x=-2x+15

x thuộc (-3;5) nên -2x thuộc (-10;6)

=>\(y\in\left(5;21\right)\)

y max=21 khi x=5

b: y=6x-x^2=-x^2+6x

x thuộc (0;6) nên -x^2 thuộc (-36;0)

6x thuộc (0;36)

=>-x^2+6x thuộc (-36;36)

y max=36 khi x=6