\(x^3-x^2y+3x-2y-5=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2020

\(x^3+3x-5=y\left(x^2+2\right)\Rightarrow y=\frac{x^3+3x-5}{x^2+2}=x+\frac{x-5}{x^2+2}\)

Để y nguyên \(\Rightarrow\frac{x-5}{x^2+2}\) nguyên

Ta có: \(\frac{x-5}{x^2+2}+3=\frac{3x^2+x+1}{x^2+2}=\frac{3\left(x+\frac{1}{6}\right)^2+\frac{11}{12}}{x^2+2}>0\Rightarrow\frac{x-5}{x+2}>-3\)

\(\frac{x-5}{x^2+2}-1=\frac{-x^2+x-7}{x^2+2}=\frac{-\left(x-\frac{1}{2}\right)^2-\frac{27}{4}}{x^2+2}< 0\Rightarrow\frac{x-5}{x^2+2}< 1\)

\(\Rightarrow-3< \frac{x-5}{x^2+2}< 1\Rightarrow\left[{}\begin{matrix}\frac{x-5}{x^2+2}=-2\\\frac{x-5}{x^2+2}=-1\\\frac{x-5}{x^2+2}=0\end{matrix}\right.\) \(\Rightarrow x=5\) \(\Rightarrow y=5\)

22 tháng 6 2018

bài 4: Ta có \(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(x-y=y\Rightarrow x=2y\)

thay x=2y vào A ta đc :

A = \(\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2018

Bài 1:

Ta có: \(x+y+z=0\Rightarrow z=-x-y\Rightarrow z^2=(-x-y)^2\)

\(\Rightarrow x^2+y^2-z^2=x^2+y^2=x^2+y^2-(-x-y)^2=-2xy\)

Hoàn toàn tương tự:

\(y^2+z^2-x^2=-2yz; z^2+x^2-y^2=-2xz\)

Do đó:

\(P=\frac{(x^2+y^2-z^2)(y^2+z^2-x^2)(z^2+x^2-y^2)}{16xyz}=\frac{(-2xy)(-2yz)(-2xz)}{16xyz}=\frac{-xyz}{2}\)

22 tháng 2 2020

\(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow\left(2x^2+2y^2+4xy\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow2\left(x^2+y^2+2xy\right)+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

Vì \(\left(x+y\right)^2\ge0\)\(\left(x+1\right)^2\ge0\)\(\left(y-1\right)^2\ge0\)\(\forall x,y\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)

Vậy \(x=-1\)và \(y=1\)

3 tháng 8 2017

mk chịu

3 tháng 8 2017

khó quá

19 tháng 10 2021

Mik giải đc bài dưới thui ạ
Từ x + z = 2y ta có:

x – 2y + z = 0 hay 2x – 4y + 2z = 0 hay 2x – y – 3y + 2z = 0 hay 2x – y = 3y – 2z

Vậy nếu: 2x−y5=3y−2z152x−y5=3y−2z15 thì: 2x – y = 3y – 2z = 0 (vì 5 ≠≠ 15.)

Từ 2x – y = 0 suy ra: x = 12y12y

Từ 3y – 2z = 0 và x + z = 2y. ⇒⇒ x + z + y – 2z = 0 hay  12y12y+ y – z = 0

hay 32y32y - z = 0 hay y = 23z23z. suy ra: x = 13z13z.

Vậy các giá trị x, y, z cần tìm là: {x = 13z13z; y = 23z23z ; với z ∈∈ R }
hoặc {x = 12y12y; y ∈∈ R; z = 32y32y} hoặc {x ∈∈ R; y = 2x; z = 3x}