Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0
<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0
<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12
<=> (3x+2y+2)^2 - (y+1)^2 = -12
<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12
<=> (3x+3y+3).(3x+y+1) = -12
<=> (x+y+1).(3x+y+1) = -4
Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !
Tk mk nha
\(\hept{\begin{cases}x^2y^2-2x+y^2=0\left(1\right)\\2x^2-4x+3=-y^3\left(2\right)\end{cases}}\)
(1)\(\Leftrightarrow y^2\left(x^2+1\right)=2x\Leftrightarrow y^2=\frac{2x}{x^2+1}\)
Dễ thấy \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow2x\le x^2+1\Leftrightarrow\frac{2x}{x^2+1}\le1\)
\(\Rightarrow y^2\le1\Leftrightarrow-1\le y\le1\)(*)
(2)\(\Leftrightarrow2x^2-4x+2=-y^3-1\)\(\Leftrightarrow2\left(x-1\right)^2=-\left(y^3+1\right)\)
Mà \(2\left(x-1\right)^2\ge0\Rightarrow-\left(y^3+1\right)\ge0\)
\(\Leftrightarrow y^3+1\le0\Leftrightarrow y^3\le-1^3\Leftrightarrow y\le-1\)(**)
TỪ (*) và (**) \(\Rightarrow y=-1\) Thế vào (2) tìm được \(x=1\)
Vậy hệ có nghiệm duy nhất (1;-1)
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
=> x^4+x^2+x^2*y^2+y^2+4x^2*y=0
=>(x^4+2x^2*y+y^2)+x^2(y^2+2y+1)=0
=>(x^2+y)^2+x^2(y+1)^2=0
=>x=1; y=-1