Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)
Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)
Dễ dàng tìm được x;y;z rồi thay vào b thức
1) (x + 2016)2016 + |y - 2017|2017 = 0
\(\Leftrightarrow\hept{\begin{cases}\left(x+2016\right)^{2016}=0\\\left|y-2017\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2016=0\\y-2017=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2016\\y=2017\end{cases}}\)
\(\frac{x+2y}{x+7}=\frac{2018}{2017}\)
\(2017\left(x+2y\right)=2018\left(x+y\right)\)
\(2017x+4034y=2018x+2018y\)
\(x=2016y\)
x,y nguyên dương nên x nhỏ nhất khi y = 1
Khi đó x =...
Đề hình như hơi sai sai \(\left|x+2017\right|^{20}\)hay \(\left(x+2017\right)^{20}\)hay \(\left|x+2017\right|\)
Theo mk đề là: \(\left|x+2017\right|+\left|x+2018\right|=1\)
\(\left|x+2017\right|+\left|-x-2018\right|=1\)
+)Ta có: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)nên
\(\left|x+2017\right|+\left|-x-2018\right|\ge\left|x+2017-x-2018\right|\)
\(\Rightarrow\left|x+2017\right|+\left|-x-2018\right|\ge\left|-1\right|\)
\(\Rightarrow\left|x+2017\right|+\left|-x-2018\right|\ge1\)
+)Dấu "=" xảy ra khi
\(\left(x+2017\right).\left(-x-2018\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+2017\ge0\\-x-2018\ge0\end{cases}hoac\hept{\begin{cases}x+2017< 0\\-x-2018< 0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2017\\-x\ge2018\end{cases}hoac\hept{\begin{cases}x< -2017\\-x< 2018\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2017\\x\le-2018\end{cases}hoac\hept{\begin{cases}x< -2017\\x>-2018\end{cases}}}\)
Vậy \(-2018< x< -2017\)(tm)
Chúc bạn học tốt
xin loi , may tinh minh hong unikey
Dat \(\frac{x}{2017}=\frac{y}{2018}=\frac{z}{2019}=k\)
Suy ra \(x=2017k;y=2018k;z=2019k\)
Khi đó 4.(x-y).(y-z) = \(4.\left(2017k-2018k\right).\left(2018k-2019k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)
\(\left(z-x\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)
Nen \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)