\(\frac{1}{3}-\frac{1}{5}\)+x|=\(-\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

10 tháng 8 2019

Đat:\(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=k\) 

\(\Rightarrow x-\frac{1}{y}=\frac{1}{6}k;y-\frac{1}{z}=\frac{1}{3}k;z-\frac{1}{x}=\frac{1}{2}k\) 

\(\Rightarrow\left(x-\frac{1}{y}\right)\left(y-\frac{1}{z}\right)\left(z-\frac{1}{x}\right)=\left(xyz-\frac{1}{xyz}\right)-\left(x-\frac{1}{y}\right)-\left(y-\frac{1}{z}\right)-\left(z-\frac{1}{x}\right)=0=\frac{k^3}{36}\)

 \(\Rightarrow k=0\Rightarrow xy=yz=zx=1\Rightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\left(giaipt\right)\)

a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)

Tự làm nốt và kết luận 

b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)

Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ....

4 tháng 4 2019

Trả lời giúp chúng mik đi mai thầy kiểm tra

4 tháng 4 2019

1,\(\frac{xyz+x+z}{yz+1}=\frac{10}{7}\Rightarrow\frac{x\left(yz+1\right)+z}{yz+1}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{z}{yz+1}=\frac{10}{7}\Leftrightarrow x+\frac{1}{\frac{yz+1}{z}}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}=1+\frac{1}{\frac{7}{3}}=1+\frac{1}{2+\frac{1}{3}}\)

Nên x=1,y=2,z=3 bài này thiếu điều kiện x,y,z nhé

2,bài 2 để mai anh xem nha

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

21 tháng 7 2018

vì x + 2 = y + 1 = z + 3 => x = y - 1 = z + 1 ; y = x + 1 = z + 2; z = x + 1 = y - 2  và z < x < y

ta có (x-1/3).(y-1/2).(z-5)=0 => ta có 3 TH

TH1 z - 5 = 0 => z = 5 ; y = 7 ; x = 4

TH2 x - 1/3 = 0 => x = 1/3 ; y = 4/3 ; z = -2/3

TH3 y - 1/2 = 0 => y = 1/2 ; x = -1/2 ; z = -3/2

nhớ cho mik nha 

21 tháng 7 2018

Ta có:

\(\left(x-\frac{1}{2}\right).\left(y-\frac{1}{2}\right).\left(z-5\right)=0\)

\(\Rightarrow x-\frac{1}{2}=0;y-\frac{1}{2}=0\)hoặc \(z-5=0\)

Với \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)\(\Rightarrow\)\(x+2=\frac{1}{3}+2=\frac{7}{3}=y+1=z+3\)\(\Rightarrow y=...;z=...\)

Với \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\)\(\Rightarrow....\)

Với \(z-5=0\)\(\Rightarrow.....\)

B tự làm nốt nhé