Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
(Cách chứng minh tại đây):
Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y - Hoc24
\(\Rightarrow x+y=0\)
Do đó \(P=100\)
Đặt \(\left(x-1;y-2;z-3\right)=\left(a;b;c\right)=abc>0\)
Điều kiện bài toán trở thành :
\(a+1+b+2+c+3< 9\)
\(\sqrt{a+\sqrt{b}+\sqrt{c}}+\sqrt{c+5\left(a+1\right)+4\left(b+2\right)+3+\left(c+3\right)}\)
\(=\left(a+1\right)\left(b+2\right)=\left(b+2\right)\left(c+3\right)=\left(c+3\right)+\left(a+1\right)+11+a+b+c< 3\)
\(a+b+c< 3\)
\(=\sqrt{a+\sqrt{b}+\sqrt{c}+ab+bc+ca}\)
Mặt khác, do aa không âm, ta luôn có:
\(\text{(√a−1)2(a+2√a)≥0(a−1)2(a+2a)≥0}\)
\(\text{⇒a2−3a+2√a≥0⇒a2−3a+2a≥0}\)
\(\text{⇒2√a≥a(3−a)≥a(b+c)⇒2a≥a(3−a)≥a(b+c) (1)}\)
Hoàn toàn tương tự ta có:\(\text{ 2√b≥b(c+a)2b≥b(c+a) (2)}\)
\(\text{2√c≥c(a+b)2c≥c(a+b) (3)}\)
Cộng vế với vế (1);(2);(3):
\(\text{2(√a+√b+√c)≥2(ab+bc+ca)2(a+b+c)≥2(ab+bc+ca)}\)
\(\text{⇔√a+√b+√c≥ab+bc+ca⇔a+b+c≥ab+bc+ca}\)
Dấu "=" xảy ra khi và chỉ khi \(\text{a=b=c=0a=b=c=0 hoặc a=b=c=1a=b=c=1}\)
⇒x=...;y=...;z=...
Khai triển nó ra,ta có:
\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)
Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(\Sigma x\cdot\left(y+z\right)\)
Rút gọn dc như vậy rồi chị làm nốt ạ