Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\)\(\left(\sqrt{x^2+3}+x\right)\left(\sqrt{x^2+3}-x\right)=3=\left(\sqrt{x^2+3}+x\right)\left(\sqrt{y^2+3}+y\right)\)
\(\Rightarrow\sqrt{x^2+3}-x=\sqrt{y^2+3}+y\)(1)
ttu \(\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\) (2)
lay (1)+(2)
\(-\left(x+y\right)=x+y\Rightarrow x+y=0\)
ma \(A=x^{2013}+y^{2013}+1=\left(x+y\right)M+1=1\)
x^3+y^3=xy-1/27
<=>(x^3+y^3+1/27)-xy=0
<=>(x^3+y^3+z^3)-3.x.y.1/3 = 0
<=> (x+y+1/3).(x^2+y^2+1/9-xy-1/3x-1/3y) = 0 [đã học để phân tích a^3+b^3+c^3-3abc = (a+b+c).(a^2+b^2+c^2-ab-bc-ca)]
<=> x+y+1/3=0 hoặc x=y=1//3 ( cũng đã học trường hợp a^3+b^3+c^3-3abc = 0 <=> a+b+c = 0 hoặc a=b=c )
=> x=y=1/3 ( vì x,y < 0 )
Khi đó thay x+y vào rùi tính P
k mk nha
Từ :\(\hept{\begin{cases}x+y+z=3\\x^4+y^4+z^4=3xyz\end{cases}}\)\(\Rightarrow x^4+y^4+z^4=\left(x+y+z\right)xyz=x^2yz+xy^2z+xyz^2\)
Áp dụng AM - GM ta có :
\(x^2yz=x.x.y.z\le\frac{x^4+x^4+y^4+z^4}{4}=\frac{2x^4+y^4+z^4}{4}\)
\(xy^2z=x.y.y.z\le\frac{x^4+y^4+y^4+z^4}{4}=\frac{x^4+2y^4+z^4}{4}\)
\(xyz^2=x.y.z.z\le\frac{x^4+y^4+z^4+z^4}{4}=\frac{x^4+y^4+2z^4}{4}\)
\(\Rightarrow x^2yz+xy^2z+xyz^2\le\frac{4\left(x^4+y^4+z^4\right)}{4}=x^4+y^4+z^4\)
Mà đề lại cho \(x^4+y^4+z^4=x^2yz+xy^2z+xyz^2\) \(\Rightarrow x=y=z\)
Kết hợp với x + y + z = 3 \(\Rightarrow x=y=z=1\)
Thay vào M ta được : \(M=2000.1^{2016}+1^{2016}+1^{2016}=2002\)
Có :\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2016}\Rightarrow2016=\frac{xy}{x+y}\)
Do Đó :P =\(\frac{\sqrt{x+y}}{\sqrt{x-2016}+\sqrt{y-2016}}\)
\(\Leftrightarrow\)P =\(\frac{\sqrt{x+y}}{\sqrt{x-\frac{xy}{x+y}}+\sqrt{y-\frac{xy}{x+y}}}\)
\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\sqrt{\frac{x^2+xy-xy}{x+y}}+\sqrt{\frac{y^2+xy-xy}{x+y}}}\)
\(\Leftrightarrow\)P =\(\frac{\sqrt{x+y}}{\sqrt{\frac{x^2}{x+y}}+\sqrt{\frac{y^2}{x+y}}}\)
\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\frac{x}{\sqrt{x+y}}+\frac{y}{\sqrt{x+y}}}\) (vì x;y dương )
\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\frac{x+y}{\sqrt{x+y}}}\)\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\sqrt{x+y}}\)
\(\Leftrightarrow P=1\)
Nhân 2 vế của pt đầu với \(x-\sqrt{x^2+3}\) đc:
\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)
Tương tự nhân 2 vế của pt đầu với \(y-\sqrt{y^2+3}\) đc:
\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)
Từ (1) và (2) =>2(x+y)=0
=>x+y=0<=>x=-y
<=>x2013=-y2013
<=>x2013+y2013=0
A=x2013+y2013+1=1
Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P
Áp dụng BĐT AM-GM ta có:
\(P=x+\frac{2}{3}y+\frac{1}{3}y+2013\ge2\sqrt{x.\frac{2}{3}y}+\frac{1}{3}y+2013\)
\(\ge2\sqrt{\frac{2}{3}.6}+\frac{1}{3}.3+2013=2\sqrt{4}+1+2013=4+2014=2018\)
Nên GTNN của P là 2018 đạt được khi \(x=2,y=3\)
\(x+y\ge2\sqrt{x.y}\)mà \(x\cdot y\ge6\)
\(\Rightarrow\)\(x+y\ge2\sqrt{x.y}\ge2\sqrt{6}\)
\(\Rightarrow\)\(x+y+2013\ge2\sqrt{x\cdot y}+2013\ge2\sqrt{6}+2013\)
dấu = xảy ra khi \(x+y+2013=2\sqrt{x\cdot y}+2013=2\sqrt{6}+2013\)
\(\Rightarrow\)Min \(p=2\sqrt{6}+2013\)
Bạn xem hộ mình sai ở đâu giùm nha?
\(x^{2016}+y^{2016}=x^{2013}+y^{2013}\)
\(\Leftrightarrow x^{2013}\left(1-x^3\right)+y^{2013}\left(1-y^3\right)=0\)
\(\Rightarrow x^{2013}.y^3+y^{2013}.x^3=0\)(bước này chỉ được suy ra, ko được tương đương)
\(\Leftrightarrow x^3y^3\left(x^{2010}+y^{2010}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}xy=0\\x=y=0\end{cases}}\)
thay lại \(x^3+y^3=1\) để giải tiếp
nếu x=y=0 thì x^3+y^3 =0 chứ